| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brifs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. InnerFiveSeg <. <. E , F >. , <. G , H >. >. <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) | 
						
							| 2 |  | simp1l |  |-  ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> B Btwn <. C , C >. ) | 
						
							| 3 |  | simp11 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 4 |  | simp13 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 5 |  | simp21 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 6 |  | axbtwnid |  |-  ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( B Btwn <. C , C >. -> B = C ) ) | 
						
							| 7 | 3 4 5 6 | syl3anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( B Btwn <. C , C >. -> B = C ) ) | 
						
							| 8 | 2 7 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> B = C ) ) | 
						
							| 9 |  | simp2r |  |-  ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , C >. Cgr <. F , G >. ) | 
						
							| 10 |  | simp3r |  |-  ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. C , D >. Cgr <. G , H >. ) | 
						
							| 11 | 9 10 | jca |  |-  ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> ( <. B , C >. Cgr <. F , G >. /\ <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 12 |  | opeq2 |  |-  ( B = C -> <. B , B >. = <. B , C >. ) | 
						
							| 13 | 12 | breq1d |  |-  ( B = C -> ( <. B , B >. Cgr <. F , G >. <-> <. B , C >. Cgr <. F , G >. ) ) | 
						
							| 14 |  | opeq1 |  |-  ( B = C -> <. B , D >. = <. C , D >. ) | 
						
							| 15 | 14 | breq1d |  |-  ( B = C -> ( <. B , D >. Cgr <. G , H >. <-> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 16 | 13 15 | anbi12d |  |-  ( B = C -> ( ( <. B , B >. Cgr <. F , G >. /\ <. B , D >. Cgr <. G , H >. ) <-> ( <. B , C >. Cgr <. F , G >. /\ <. C , D >. Cgr <. G , H >. ) ) ) | 
						
							| 17 | 16 | biimprd |  |-  ( B = C -> ( ( <. B , C >. Cgr <. F , G >. /\ <. C , D >. Cgr <. G , H >. ) -> ( <. B , B >. Cgr <. F , G >. /\ <. B , D >. Cgr <. G , H >. ) ) ) | 
						
							| 18 | 11 17 | mpan9 |  |-  ( ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ B = C ) -> ( <. B , B >. Cgr <. F , G >. /\ <. B , D >. Cgr <. G , H >. ) ) | 
						
							| 19 |  | simp31 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 20 |  | simp32 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> G e. ( EE ` N ) ) | 
						
							| 21 |  | cgrid2 |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ F e. ( EE ` N ) /\ G e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. F , G >. -> F = G ) ) | 
						
							| 22 | 3 4 19 20 21 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. F , G >. -> F = G ) ) | 
						
							| 23 |  | opeq1 |  |-  ( F = G -> <. F , H >. = <. G , H >. ) | 
						
							| 24 | 23 | breq2d |  |-  ( F = G -> ( <. B , D >. Cgr <. F , H >. <-> <. B , D >. Cgr <. G , H >. ) ) | 
						
							| 25 | 24 | biimprd |  |-  ( F = G -> ( <. B , D >. Cgr <. G , H >. -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 26 | 22 25 | syl6 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. F , G >. -> ( <. B , D >. Cgr <. G , H >. -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 27 | 26 | impd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. B , B >. Cgr <. F , G >. /\ <. B , D >. Cgr <. G , H >. ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 28 | 18 27 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ B = C ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 29 | 28 | expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> ( B = C -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 30 | 8 29 | mpdd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 31 |  | opeq1 |  |-  ( A = C -> <. A , C >. = <. C , C >. ) | 
						
							| 32 | 31 | breq2d |  |-  ( A = C -> ( B Btwn <. A , C >. <-> B Btwn <. C , C >. ) ) | 
						
							| 33 | 32 | anbi1d |  |-  ( A = C -> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) <-> ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) ) ) | 
						
							| 34 | 31 | breq1d |  |-  ( A = C -> ( <. A , C >. Cgr <. E , G >. <-> <. C , C >. Cgr <. E , G >. ) ) | 
						
							| 35 | 34 | anbi1d |  |-  ( A = C -> ( ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) <-> ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) ) ) | 
						
							| 36 | 33 35 | 3anbi12d |  |-  ( A = C -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) <-> ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) | 
						
							| 37 | 36 | imbi1d |  |-  ( A = C -> ( ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) <-> ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 38 | 30 37 | imbitrrid |  |-  ( A = C -> ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 39 |  | simp12 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 40 |  | btwndiff |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> E. e e. ( EE ` N ) ( C Btwn <. A , e >. /\ C =/= e ) ) | 
						
							| 41 | 3 39 5 40 | syl3anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> E. e e. ( EE ` N ) ( C Btwn <. A , e >. /\ C =/= e ) ) | 
						
							| 42 |  | simpl11 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 43 |  | simpl23 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> E e. ( EE ` N ) ) | 
						
							| 44 |  | simpl32 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> G e. ( EE ` N ) ) | 
						
							| 45 |  | simpl21 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> C e. ( EE ` N ) ) | 
						
							| 46 |  | simpr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> e e. ( EE ` N ) ) | 
						
							| 47 |  | axsegcon |  |-  ( ( N e. NN /\ ( E e. ( EE ` N ) /\ G e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) ) | 
						
							| 48 | 42 43 44 45 46 47 | syl122anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> E. f e. ( EE ` N ) ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) ) | 
						
							| 49 |  | anass |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) <-> ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) ) ) | 
						
							| 50 |  | anass |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ A =/= C ) <-> ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) ) | 
						
							| 51 |  | simplrl |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> C Btwn <. A , e >. ) | 
						
							| 52 | 51 | adantl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> C Btwn <. A , e >. ) | 
						
							| 53 |  | simplll |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> G Btwn <. E , f >. ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> G Btwn <. E , f >. ) | 
						
							| 55 | 52 54 | jca |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) ) | 
						
							| 56 |  | simpr2l |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. A , C >. Cgr <. E , G >. ) | 
						
							| 57 | 56 | adantl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> <. A , C >. Cgr <. E , G >. ) | 
						
							| 58 |  | simpllr |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. G , f >. Cgr <. C , e >. ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> <. G , f >. Cgr <. C , e >. ) | 
						
							| 60 | 3 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> N e. NN ) | 
						
							| 61 | 20 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> G e. ( EE ` N ) ) | 
						
							| 62 |  | simplrr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> f e. ( EE ` N ) ) | 
						
							| 63 | 5 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 64 |  | simplrl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> e e. ( EE ` N ) ) | 
						
							| 65 |  | cgrcom |  |-  ( ( N e. NN /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. C , e >. Cgr <. G , f >. ) ) | 
						
							| 66 | 60 61 62 63 64 65 | syl122anc |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. C , e >. Cgr <. G , f >. ) ) | 
						
							| 67 | 59 66 | mpbid |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> <. C , e >. Cgr <. G , f >. ) | 
						
							| 68 | 57 67 | jca |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) ) | 
						
							| 69 |  | simprr3 |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 70 | 55 68 69 | 3jca |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) | 
						
							| 71 | 70 | ex |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> ( ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) | 
						
							| 72 |  | simpl11 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 73 |  | simpl12 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 74 |  | simpl21 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 75 |  | simprl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> e e. ( EE ` N ) ) | 
						
							| 76 |  | simpl22 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 77 |  | simpl23 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 78 |  | simpl32 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> G e. ( EE ` N ) ) | 
						
							| 79 |  | simprr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> f e. ( EE ` N ) ) | 
						
							| 80 |  | simpl33 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> H e. ( EE ` N ) ) | 
						
							| 81 |  | brofs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. <-> ( ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) | 
						
							| 82 | 72 73 74 75 76 77 78 79 80 81 | syl333anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. <-> ( ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) | 
						
							| 83 | 71 82 | sylibrd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. ) ) | 
						
							| 84 |  | 5segofs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. /\ A =/= C ) -> <. e , D >. Cgr <. f , H >. ) ) | 
						
							| 85 | 72 73 74 75 76 77 78 79 80 84 | syl333anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. /\ A =/= C ) -> <. e , D >. Cgr <. f , H >. ) ) | 
						
							| 86 | 83 85 | syland |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ A =/= C ) -> <. e , D >. Cgr <. f , H >. ) ) | 
						
							| 87 |  | simpr1l |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> B Btwn <. A , C >. ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> B Btwn <. A , C >. ) | 
						
							| 89 | 51 | adantr |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> C Btwn <. A , e >. ) | 
						
							| 90 | 88 89 | jca |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) ) | 
						
							| 91 |  | simpr1r |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> F Btwn <. E , G >. ) | 
						
							| 92 | 91 | adantr |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> F Btwn <. E , G >. ) | 
						
							| 93 | 53 | adantr |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> G Btwn <. E , f >. ) | 
						
							| 94 | 90 92 93 | jca32 |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) /\ ( F Btwn <. E , G >. /\ G Btwn <. E , f >. ) ) ) | 
						
							| 95 |  | simpl13 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 96 |  | btwnexch3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) -> C Btwn <. B , e >. ) ) | 
						
							| 97 | 72 73 95 74 75 96 | syl122anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) -> C Btwn <. B , e >. ) ) | 
						
							| 98 |  | simpl31 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 99 |  | btwnexch3 |  |-  ( ( N e. NN /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( F Btwn <. E , G >. /\ G Btwn <. E , f >. ) -> G Btwn <. F , f >. ) ) | 
						
							| 100 | 72 77 98 78 79 99 | syl122anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( F Btwn <. E , G >. /\ G Btwn <. E , f >. ) -> G Btwn <. F , f >. ) ) | 
						
							| 101 | 97 100 | anim12d |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) /\ ( F Btwn <. E , G >. /\ G Btwn <. E , f >. ) ) -> ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) ) ) | 
						
							| 102 | 94 101 | syl5 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) ) ) | 
						
							| 103 | 102 | imp |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) ) | 
						
							| 104 |  | btwncom |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> ( C Btwn <. B , e >. <-> C Btwn <. e , B >. ) ) | 
						
							| 105 | 72 74 95 75 104 | syl13anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( C Btwn <. B , e >. <-> C Btwn <. e , B >. ) ) | 
						
							| 106 |  | btwncom |  |-  ( ( N e. NN /\ ( G e. ( EE ` N ) /\ F e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( G Btwn <. F , f >. <-> G Btwn <. f , F >. ) ) | 
						
							| 107 | 72 78 98 79 106 | syl13anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( G Btwn <. F , f >. <-> G Btwn <. f , F >. ) ) | 
						
							| 108 | 105 107 | anbi12d |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) <-> ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) <-> ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) ) ) | 
						
							| 110 | 103 109 | mpbid |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) ) | 
						
							| 111 | 58 | ad2antrl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. G , f >. Cgr <. C , e >. ) | 
						
							| 112 | 72 78 79 74 75 65 | syl122anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. C , e >. Cgr <. G , f >. ) ) | 
						
							| 113 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. C , e >. Cgr <. G , f >. <-> <. e , C >. Cgr <. f , G >. ) ) | 
						
							| 114 | 72 74 75 78 79 113 | syl122anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. C , e >. Cgr <. G , f >. <-> <. e , C >. Cgr <. f , G >. ) ) | 
						
							| 115 | 112 114 | bitrd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. e , C >. Cgr <. f , G >. ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. e , C >. Cgr <. f , G >. ) ) | 
						
							| 117 | 111 116 | mpbid |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. e , C >. Cgr <. f , G >. ) | 
						
							| 118 |  | simpr2r |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. B , C >. Cgr <. F , G >. ) | 
						
							| 119 | 118 | ad2antrl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. B , C >. Cgr <. F , G >. ) | 
						
							| 120 | 72 95 74 98 78 119 | cgrcomlrand |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. C , B >. Cgr <. G , F >. ) | 
						
							| 121 | 117 120 | jca |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) ) | 
						
							| 122 |  | simprr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. e , D >. Cgr <. f , H >. ) | 
						
							| 123 |  | simpr3r |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. C , D >. Cgr <. G , H >. ) | 
						
							| 124 | 123 | ad2antrl |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. C , D >. Cgr <. G , H >. ) | 
						
							| 125 | 122 124 | jca |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 126 | 110 121 125 | 3jca |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) /\ ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) /\ ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) | 
						
							| 127 | 126 | ex |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) /\ ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) /\ ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) | 
						
							| 128 |  | brofs |  |-  ( ( ( N e. NN /\ e e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ F e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. <-> ( ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) /\ ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) /\ ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) | 
						
							| 129 | 72 75 74 95 76 79 78 98 80 128 | syl333anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. <-> ( ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) /\ ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) /\ ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) | 
						
							| 130 | 127 129 | sylibrd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. ) ) | 
						
							| 131 |  | simplrr |  |-  ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> C =/= e ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> C =/= e ) | 
						
							| 133 | 132 | necomd |  |-  ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> e =/= C ) | 
						
							| 134 | 133 | a1i |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> e =/= C ) ) | 
						
							| 135 | 130 134 | jcad |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. /\ e =/= C ) ) ) | 
						
							| 136 |  | 5segofs |  |-  ( ( ( N e. NN /\ e e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ F e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. /\ e =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 137 | 72 75 74 95 76 79 78 98 80 136 | syl333anc |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. /\ e =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 138 | 135 137 | syld |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 139 | 138 | expd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> ( <. e , D >. Cgr <. f , H >. -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 140 | 139 | adantrd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ A =/= C ) -> ( <. e , D >. Cgr <. f , H >. -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 141 | 86 140 | mpdd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ A =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 142 | 50 141 | biimtrrid |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 143 | 49 142 | biimtrrid |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 144 | 143 | expd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) -> ( ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 145 | 144 | anassrs |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) -> ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) -> ( ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 146 | 145 | rexlimdva |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( E. f e. ( EE ` N ) ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) -> ( ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 147 | 48 146 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 148 | 147 | expd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( C Btwn <. A , e >. /\ C =/= e ) -> ( ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 149 | 148 | rexlimdva |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( E. e e. ( EE ` N ) ( C Btwn <. A , e >. /\ C =/= e ) -> ( ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 150 | 41 149 | mpd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 151 | 150 | expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> ( A =/= C -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 152 | 151 | com3r |  |-  ( A =/= C -> ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 153 | 38 152 | pm2.61ine |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 154 | 1 153 | sylbid |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. InnerFiveSeg <. <. E , F >. , <. G , H >. >. -> <. B , D >. Cgr <. F , H >. ) ) |