Step |
Hyp |
Ref |
Expression |
1 |
|
brifs |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. InnerFiveSeg <. <. E , F >. , <. G , H >. >. <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) |
2 |
|
simp1l |
|- ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> B Btwn <. C , C >. ) |
3 |
|
simp11 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> N e. NN ) |
4 |
|
simp13 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
5 |
|
simp21 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
6 |
|
axbtwnid |
|- ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( B Btwn <. C , C >. -> B = C ) ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( B Btwn <. C , C >. -> B = C ) ) |
8 |
2 7
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> B = C ) ) |
9 |
|
simp2r |
|- ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , C >. Cgr <. F , G >. ) |
10 |
|
simp3r |
|- ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. C , D >. Cgr <. G , H >. ) |
11 |
9 10
|
jca |
|- ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> ( <. B , C >. Cgr <. F , G >. /\ <. C , D >. Cgr <. G , H >. ) ) |
12 |
|
opeq2 |
|- ( B = C -> <. B , B >. = <. B , C >. ) |
13 |
12
|
breq1d |
|- ( B = C -> ( <. B , B >. Cgr <. F , G >. <-> <. B , C >. Cgr <. F , G >. ) ) |
14 |
|
opeq1 |
|- ( B = C -> <. B , D >. = <. C , D >. ) |
15 |
14
|
breq1d |
|- ( B = C -> ( <. B , D >. Cgr <. G , H >. <-> <. C , D >. Cgr <. G , H >. ) ) |
16 |
13 15
|
anbi12d |
|- ( B = C -> ( ( <. B , B >. Cgr <. F , G >. /\ <. B , D >. Cgr <. G , H >. ) <-> ( <. B , C >. Cgr <. F , G >. /\ <. C , D >. Cgr <. G , H >. ) ) ) |
17 |
16
|
biimprd |
|- ( B = C -> ( ( <. B , C >. Cgr <. F , G >. /\ <. C , D >. Cgr <. G , H >. ) -> ( <. B , B >. Cgr <. F , G >. /\ <. B , D >. Cgr <. G , H >. ) ) ) |
18 |
11 17
|
mpan9 |
|- ( ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ B = C ) -> ( <. B , B >. Cgr <. F , G >. /\ <. B , D >. Cgr <. G , H >. ) ) |
19 |
|
simp31 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) |
20 |
|
simp32 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> G e. ( EE ` N ) ) |
21 |
|
cgrid2 |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ F e. ( EE ` N ) /\ G e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. F , G >. -> F = G ) ) |
22 |
3 4 19 20 21
|
syl13anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. F , G >. -> F = G ) ) |
23 |
|
opeq1 |
|- ( F = G -> <. F , H >. = <. G , H >. ) |
24 |
23
|
breq2d |
|- ( F = G -> ( <. B , D >. Cgr <. F , H >. <-> <. B , D >. Cgr <. G , H >. ) ) |
25 |
24
|
biimprd |
|- ( F = G -> ( <. B , D >. Cgr <. G , H >. -> <. B , D >. Cgr <. F , H >. ) ) |
26 |
22 25
|
syl6 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. F , G >. -> ( <. B , D >. Cgr <. G , H >. -> <. B , D >. Cgr <. F , H >. ) ) ) |
27 |
26
|
impd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. B , B >. Cgr <. F , G >. /\ <. B , D >. Cgr <. G , H >. ) -> <. B , D >. Cgr <. F , H >. ) ) |
28 |
18 27
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ B = C ) -> <. B , D >. Cgr <. F , H >. ) ) |
29 |
28
|
expd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> ( B = C -> <. B , D >. Cgr <. F , H >. ) ) ) |
30 |
8 29
|
mpdd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) |
31 |
|
opeq1 |
|- ( A = C -> <. A , C >. = <. C , C >. ) |
32 |
31
|
breq2d |
|- ( A = C -> ( B Btwn <. A , C >. <-> B Btwn <. C , C >. ) ) |
33 |
32
|
anbi1d |
|- ( A = C -> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) <-> ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) ) ) |
34 |
31
|
breq1d |
|- ( A = C -> ( <. A , C >. Cgr <. E , G >. <-> <. C , C >. Cgr <. E , G >. ) ) |
35 |
34
|
anbi1d |
|- ( A = C -> ( ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) <-> ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) ) ) |
36 |
33 35
|
3anbi12d |
|- ( A = C -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) <-> ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) |
37 |
36
|
imbi1d |
|- ( A = C -> ( ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) <-> ( ( ( B Btwn <. C , C >. /\ F Btwn <. E , G >. ) /\ ( <. C , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) |
38 |
30 37
|
syl5ibr |
|- ( A = C -> ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) |
39 |
|
simp12 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
40 |
|
btwndiff |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> E. e e. ( EE ` N ) ( C Btwn <. A , e >. /\ C =/= e ) ) |
41 |
3 39 5 40
|
syl3anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> E. e e. ( EE ` N ) ( C Btwn <. A , e >. /\ C =/= e ) ) |
42 |
|
simpl11 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> N e. NN ) |
43 |
|
simpl23 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> E e. ( EE ` N ) ) |
44 |
|
simpl32 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> G e. ( EE ` N ) ) |
45 |
|
simpl21 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
46 |
|
simpr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> e e. ( EE ` N ) ) |
47 |
|
axsegcon |
|- ( ( N e. NN /\ ( E e. ( EE ` N ) /\ G e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> E. f e. ( EE ` N ) ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) ) |
48 |
42 43 44 45 46 47
|
syl122anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> E. f e. ( EE ` N ) ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) ) |
49 |
|
anass |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) <-> ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) ) ) |
50 |
|
anass |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ A =/= C ) <-> ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) ) |
51 |
|
simplrl |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> C Btwn <. A , e >. ) |
52 |
51
|
adantl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> C Btwn <. A , e >. ) |
53 |
|
simplll |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> G Btwn <. E , f >. ) |
54 |
53
|
adantl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> G Btwn <. E , f >. ) |
55 |
52 54
|
jca |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) ) |
56 |
|
simpr2l |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. A , C >. Cgr <. E , G >. ) |
57 |
56
|
adantl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> <. A , C >. Cgr <. E , G >. ) |
58 |
|
simpllr |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. G , f >. Cgr <. C , e >. ) |
59 |
58
|
adantl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> <. G , f >. Cgr <. C , e >. ) |
60 |
3
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> N e. NN ) |
61 |
20
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> G e. ( EE ` N ) ) |
62 |
|
simplrr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> f e. ( EE ` N ) ) |
63 |
5
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> C e. ( EE ` N ) ) |
64 |
|
simplrl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> e e. ( EE ` N ) ) |
65 |
|
cgrcom |
|- ( ( N e. NN /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. C , e >. Cgr <. G , f >. ) ) |
66 |
60 61 62 63 64 65
|
syl122anc |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. C , e >. Cgr <. G , f >. ) ) |
67 |
59 66
|
mpbid |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> <. C , e >. Cgr <. G , f >. ) |
68 |
57 67
|
jca |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) ) |
69 |
|
simprr3 |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) |
70 |
55 68 69
|
3jca |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) -> ( ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) |
71 |
70
|
ex |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> ( ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) |
72 |
|
simpl11 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> N e. NN ) |
73 |
|
simpl12 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
74 |
|
simpl21 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
75 |
|
simprl |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> e e. ( EE ` N ) ) |
76 |
|
simpl22 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
77 |
|
simpl23 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) |
78 |
|
simpl32 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> G e. ( EE ` N ) ) |
79 |
|
simprr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> f e. ( EE ` N ) ) |
80 |
|
simpl33 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> H e. ( EE ` N ) ) |
81 |
|
brofs |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. <-> ( ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) |
82 |
72 73 74 75 76 77 78 79 80 81
|
syl333anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. <-> ( ( C Btwn <. A , e >. /\ G Btwn <. E , f >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. C , e >. Cgr <. G , f >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) |
83 |
71 82
|
sylibrd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. ) ) |
84 |
|
5segofs |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( e e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. /\ A =/= C ) -> <. e , D >. Cgr <. f , H >. ) ) |
85 |
72 73 74 75 76 77 78 79 80 84
|
syl333anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( <. <. A , C >. , <. e , D >. >. OuterFiveSeg <. <. E , G >. , <. f , H >. >. /\ A =/= C ) -> <. e , D >. Cgr <. f , H >. ) ) |
86 |
83 85
|
syland |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ A =/= C ) -> <. e , D >. Cgr <. f , H >. ) ) |
87 |
|
simpr1l |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> B Btwn <. A , C >. ) |
88 |
87
|
adantr |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> B Btwn <. A , C >. ) |
89 |
51
|
adantr |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> C Btwn <. A , e >. ) |
90 |
88 89
|
jca |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) ) |
91 |
|
simpr1r |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> F Btwn <. E , G >. ) |
92 |
91
|
adantr |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> F Btwn <. E , G >. ) |
93 |
53
|
adantr |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> G Btwn <. E , f >. ) |
94 |
90 92 93
|
jca32 |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) /\ ( F Btwn <. E , G >. /\ G Btwn <. E , f >. ) ) ) |
95 |
|
simpl13 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
96 |
|
btwnexch3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) -> C Btwn <. B , e >. ) ) |
97 |
72 73 95 74 75 96
|
syl122anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) -> C Btwn <. B , e >. ) ) |
98 |
|
simpl31 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) |
99 |
|
btwnexch3 |
|- ( ( N e. NN /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( F Btwn <. E , G >. /\ G Btwn <. E , f >. ) -> G Btwn <. F , f >. ) ) |
100 |
72 77 98 78 79 99
|
syl122anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( F Btwn <. E , G >. /\ G Btwn <. E , f >. ) -> G Btwn <. F , f >. ) ) |
101 |
97 100
|
anim12d |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ C Btwn <. A , e >. ) /\ ( F Btwn <. E , G >. /\ G Btwn <. E , f >. ) ) -> ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) ) ) |
102 |
94 101
|
syl5 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) ) ) |
103 |
102
|
imp |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) ) |
104 |
|
btwncom |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ e e. ( EE ` N ) ) ) -> ( C Btwn <. B , e >. <-> C Btwn <. e , B >. ) ) |
105 |
72 74 95 75 104
|
syl13anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( C Btwn <. B , e >. <-> C Btwn <. e , B >. ) ) |
106 |
|
btwncom |
|- ( ( N e. NN /\ ( G e. ( EE ` N ) /\ F e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( G Btwn <. F , f >. <-> G Btwn <. f , F >. ) ) |
107 |
72 78 98 79 106
|
syl13anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( G Btwn <. F , f >. <-> G Btwn <. f , F >. ) ) |
108 |
105 107
|
anbi12d |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) <-> ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) ) ) |
109 |
108
|
adantr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( ( C Btwn <. B , e >. /\ G Btwn <. F , f >. ) <-> ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) ) ) |
110 |
103 109
|
mpbid |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) ) |
111 |
58
|
ad2antrl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. G , f >. Cgr <. C , e >. ) |
112 |
72 78 79 74 75 65
|
syl122anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. C , e >. Cgr <. G , f >. ) ) |
113 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ e e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. C , e >. Cgr <. G , f >. <-> <. e , C >. Cgr <. f , G >. ) ) |
114 |
72 74 75 78 79 113
|
syl122anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. C , e >. Cgr <. G , f >. <-> <. e , C >. Cgr <. f , G >. ) ) |
115 |
112 114
|
bitrd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. e , C >. Cgr <. f , G >. ) ) |
116 |
115
|
adantr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( <. G , f >. Cgr <. C , e >. <-> <. e , C >. Cgr <. f , G >. ) ) |
117 |
111 116
|
mpbid |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. e , C >. Cgr <. f , G >. ) |
118 |
|
simpr2r |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. B , C >. Cgr <. F , G >. ) |
119 |
118
|
ad2antrl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. B , C >. Cgr <. F , G >. ) |
120 |
72 95 74 98 78 119
|
cgrcomlrand |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. C , B >. Cgr <. G , F >. ) |
121 |
117 120
|
jca |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) ) |
122 |
|
simprr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. e , D >. Cgr <. f , H >. ) |
123 |
|
simpr3r |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> <. C , D >. Cgr <. G , H >. ) |
124 |
123
|
ad2antrl |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> <. C , D >. Cgr <. G , H >. ) |
125 |
122 124
|
jca |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) |
126 |
110 121 125
|
3jca |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) /\ ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) ) -> ( ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) /\ ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) /\ ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) |
127 |
126
|
ex |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) /\ ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) /\ ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) |
128 |
|
brofs |
|- ( ( ( N e. NN /\ e e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ F e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. <-> ( ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) /\ ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) /\ ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) |
129 |
72 75 74 95 76 79 78 98 80 128
|
syl333anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. <-> ( ( C Btwn <. e , B >. /\ G Btwn <. f , F >. ) /\ ( <. e , C >. Cgr <. f , G >. /\ <. C , B >. Cgr <. G , F >. ) /\ ( <. e , D >. Cgr <. f , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) ) |
130 |
127 129
|
sylibrd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. ) ) |
131 |
|
simplrr |
|- ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> C =/= e ) |
132 |
131
|
adantr |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> C =/= e ) |
133 |
132
|
necomd |
|- ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> e =/= C ) |
134 |
133
|
a1i |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> e =/= C ) ) |
135 |
130 134
|
jcad |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. /\ e =/= C ) ) ) |
136 |
|
5segofs |
|- ( ( ( N e. NN /\ e e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ f e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ F e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. /\ e =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) |
137 |
72 75 74 95 76 79 78 98 80 136
|
syl333anc |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( <. <. e , C >. , <. B , D >. >. OuterFiveSeg <. <. f , G >. , <. F , H >. >. /\ e =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) |
138 |
135 137
|
syld |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ <. e , D >. Cgr <. f , H >. ) -> <. B , D >. Cgr <. F , H >. ) ) |
139 |
138
|
expd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) -> ( <. e , D >. Cgr <. f , H >. -> <. B , D >. Cgr <. F , H >. ) ) ) |
140 |
139
|
adantrd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ A =/= C ) -> ( <. e , D >. Cgr <. f , H >. -> <. B , D >. Cgr <. F , H >. ) ) ) |
141 |
86 140
|
mpdd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) ) /\ A =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) |
142 |
50 141
|
syl5bir |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( C Btwn <. A , e >. /\ C =/= e ) ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) |
143 |
49 142
|
syl5bir |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) /\ ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) ) -> <. B , D >. Cgr <. F , H >. ) ) |
144 |
143
|
expd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ ( e e. ( EE ` N ) /\ f e. ( EE ` N ) ) ) -> ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) -> ( ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) |
145 |
144
|
anassrs |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) /\ f e. ( EE ` N ) ) -> ( ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) -> ( ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) |
146 |
145
|
rexlimdva |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( E. f e. ( EE ` N ) ( G Btwn <. E , f >. /\ <. G , f >. Cgr <. C , e >. ) -> ( ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) |
147 |
48 146
|
mpd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( ( C Btwn <. A , e >. /\ C =/= e ) /\ ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) ) -> <. B , D >. Cgr <. F , H >. ) ) |
148 |
147
|
expd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) /\ e e. ( EE ` N ) ) -> ( ( C Btwn <. A , e >. /\ C =/= e ) -> ( ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) ) |
149 |
148
|
rexlimdva |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( E. e e. ( EE ` N ) ( C Btwn <. A , e >. /\ C =/= e ) -> ( ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) ) |
150 |
41 149
|
mpd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) /\ A =/= C ) -> <. B , D >. Cgr <. F , H >. ) ) |
151 |
150
|
expd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> ( A =/= C -> <. B , D >. Cgr <. F , H >. ) ) ) |
152 |
151
|
com3r |
|- ( A =/= C -> ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) ) |
153 |
38 152
|
pm2.61ine |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , C >. Cgr <. E , G >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. C , D >. Cgr <. G , H >. ) ) -> <. B , D >. Cgr <. F , H >. ) ) |
154 |
1 153
|
sylbid |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. InnerFiveSeg <. <. E , F >. , <. G , H >. >. -> <. B , D >. Cgr <. F , H >. ) ) |