| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) ) | 
						
							| 2 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) | 
						
							| 3 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> N e. NN ) | 
						
							| 4 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 5 |  | simpl31 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 6 |  | cgrtriv |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> <. A , A >. Cgr <. D , D >. ) | 
						
							| 7 | 3 4 5 6 | syl3anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , A >. Cgr <. D , D >. ) | 
						
							| 8 |  | simprrl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , C >. Cgr <. D , F >. ) | 
						
							| 9 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 10 |  | simpl33 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 11 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. C , A >. Cgr <. F , D >. ) ) | 
						
							| 12 | 3 4 9 5 10 11 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. C , A >. Cgr <. F , D >. ) ) | 
						
							| 13 | 8 12 | mpbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. C , A >. Cgr <. F , D >. ) | 
						
							| 14 | 7 13 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) | 
						
							| 15 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 16 |  | simpl32 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 17 |  | brifs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , A >. >. InnerFiveSeg <. <. D , E >. , <. F , D >. >. <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) ) ) | 
						
							| 18 |  | ifscgr |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , A >. >. InnerFiveSeg <. <. D , E >. , <. F , D >. >. -> <. B , A >. Cgr <. E , D >. ) ) | 
						
							| 19 | 17 18 | sylbird |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) -> <. B , A >. Cgr <. E , D >. ) ) | 
						
							| 20 | 3 4 15 9 4 5 16 10 5 19 | syl333anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) -> <. B , A >. Cgr <. E , D >. ) ) | 
						
							| 21 | 1 2 14 20 | mp3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. B , A >. Cgr <. E , D >. ) | 
						
							| 22 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , A >. Cgr <. E , D >. <-> <. A , B >. Cgr <. D , E >. ) ) | 
						
							| 23 | 3 15 4 16 5 22 | syl122anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. B , A >. Cgr <. E , D >. <-> <. A , B >. Cgr <. D , E >. ) ) | 
						
							| 24 | 21 23 | mpbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , B >. Cgr <. D , E >. ) | 
						
							| 25 | 24 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , B >. Cgr <. D , E >. ) ) |