Metamath Proof Explorer


Theorem cgrsub

Description: Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of Schwabhauser p. 35. (Contributed by Scott Fenton, 4-Oct-2013)

Ref Expression
Assertion cgrsub
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , B >. Cgr <. D , E >. ) )

Proof

Step Hyp Ref Expression
1 simprl
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) )
2 simprr
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) )
3 simpl1
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> N e. NN )
4 simpl21
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> A e. ( EE ` N ) )
5 simpl31
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> D e. ( EE ` N ) )
6 cgrtriv
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> <. A , A >. Cgr <. D , D >. )
7 3 4 5 6 syl3anc
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , A >. Cgr <. D , D >. )
8 simprrl
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , C >. Cgr <. D , F >. )
9 simpl23
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> C e. ( EE ` N ) )
10 simpl33
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> F e. ( EE ` N ) )
11 cgrcomlr
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. C , A >. Cgr <. F , D >. ) )
12 3 4 9 5 10 11 syl122anc
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. C , A >. Cgr <. F , D >. ) )
13 8 12 mpbid
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. C , A >. Cgr <. F , D >. )
14 7 13 jca
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) )
15 simpl22
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> B e. ( EE ` N ) )
16 simpl32
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> E e. ( EE ` N ) )
17 brifs
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , A >. >. InnerFiveSeg <. <. D , E >. , <. F , D >. >. <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) ) )
18 ifscgr
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , A >. >. InnerFiveSeg <. <. D , E >. , <. F , D >. >. -> <. B , A >. Cgr <. E , D >. ) )
19 17 18 sylbird
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) -> <. B , A >. Cgr <. E , D >. ) )
20 3 4 15 9 4 5 16 10 5 19 syl333anc
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) -> <. B , A >. Cgr <. E , D >. ) )
21 1 2 14 20 mp3and
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. B , A >. Cgr <. E , D >. )
22 cgrcomlr
 |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , A >. Cgr <. E , D >. <-> <. A , B >. Cgr <. D , E >. ) )
23 3 15 4 16 5 22 syl122anc
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. B , A >. Cgr <. E , D >. <-> <. A , B >. Cgr <. D , E >. ) )
24 21 23 mpbid
 |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , B >. Cgr <. D , E >. )
25 24 ex
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , B >. Cgr <. D , E >. ) )