Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) ) |
2 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) |
3 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> N e. NN ) |
4 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> A e. ( EE ` N ) ) |
5 |
|
simpl31 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> D e. ( EE ` N ) ) |
6 |
|
cgrtriv |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> <. A , A >. Cgr <. D , D >. ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , A >. Cgr <. D , D >. ) |
8 |
|
simprrl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , C >. Cgr <. D , F >. ) |
9 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> C e. ( EE ` N ) ) |
10 |
|
simpl33 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> F e. ( EE ` N ) ) |
11 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. C , A >. Cgr <. F , D >. ) ) |
12 |
3 4 9 5 10 11
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. C , A >. Cgr <. F , D >. ) ) |
13 |
8 12
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. C , A >. Cgr <. F , D >. ) |
14 |
7 13
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) |
15 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> B e. ( EE ` N ) ) |
16 |
|
simpl32 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> E e. ( EE ` N ) ) |
17 |
|
brifs |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , A >. >. InnerFiveSeg <. <. D , E >. , <. F , D >. >. <-> ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) ) ) |
18 |
|
ifscgr |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , A >. >. InnerFiveSeg <. <. D , E >. , <. F , D >. >. -> <. B , A >. Cgr <. E , D >. ) ) |
19 |
17 18
|
sylbird |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) -> <. B , A >. Cgr <. E , D >. ) ) |
20 |
3 4 15 9 4 5 16 10 5 19
|
syl333anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) /\ ( <. A , A >. Cgr <. D , D >. /\ <. C , A >. Cgr <. F , D >. ) ) -> <. B , A >. Cgr <. E , D >. ) ) |
21 |
1 2 14 20
|
mp3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. B , A >. Cgr <. E , D >. ) |
22 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , A >. Cgr <. E , D >. <-> <. A , B >. Cgr <. D , E >. ) ) |
23 |
3 15 4 16 5 22
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> ( <. B , A >. Cgr <. E , D >. <-> <. A , B >. Cgr <. D , E >. ) ) |
24 |
21 23
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) /\ ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) -> <. A , B >. Cgr <. D , E >. ) |
25 |
24
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. A , C >. /\ E Btwn <. D , F >. ) /\ ( <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) -> <. A , B >. Cgr <. D , E >. ) ) |