Metamath Proof Explorer


Theorem cgr3com

Description: Commutativity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion cgr3com
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. D , <. E , F >. >. Cgr3 <. A , <. B , C >. >. ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( N e. NN -> N e. NN )
2 3simpa
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) )
3 3simpa
 |-  ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) )
4 cgrcom
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. D , E >. Cgr <. A , B >. ) )
5 1 2 3 4 syl3an
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. D , E >. Cgr <. A , B >. ) )
6 3simpb
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) )
7 3simpb
 |-  ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) )
8 cgrcom
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. D , F >. Cgr <. A , C >. ) )
9 1 6 7 8 syl3an
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. D , F >. Cgr <. A , C >. ) )
10 3simpc
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) )
11 3simpc
 |-  ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) )
12 cgrcom
 |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. E , F >. <-> <. E , F >. Cgr <. B , C >. ) )
13 1 10 11 12 syl3an
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. E , F >. <-> <. E , F >. Cgr <. B , C >. ) )
14 5 9 13 3anbi123d
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) <-> ( <. D , E >. Cgr <. A , B >. /\ <. D , F >. Cgr <. A , C >. /\ <. E , F >. Cgr <. B , C >. ) ) )
15 brcgr3
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) )
16 brcgr3
 |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. D , <. E , F >. >. Cgr3 <. A , <. B , C >. >. <-> ( <. D , E >. Cgr <. A , B >. /\ <. D , F >. Cgr <. A , C >. /\ <. E , F >. Cgr <. B , C >. ) ) )
17 16 3com23
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. D , <. E , F >. >. Cgr3 <. A , <. B , C >. >. <-> ( <. D , E >. Cgr <. A , B >. /\ <. D , F >. Cgr <. A , C >. /\ <. E , F >. Cgr <. B , C >. ) ) )
18 14 15 17 3bitr4d
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. D , <. E , F >. >. Cgr3 <. A , <. B , C >. >. ) )