Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( N e. NN -> N e. NN ) |
2 |
|
3simpa |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
3 |
|
3simpa |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) |
4 |
|
cgrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. D , E >. Cgr <. A , B >. ) ) |
5 |
1 2 3 4
|
syl3an |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , E >. <-> <. D , E >. Cgr <. A , B >. ) ) |
6 |
|
3simpb |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
7 |
|
3simpb |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
8 |
|
cgrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. D , F >. Cgr <. A , C >. ) ) |
9 |
1 6 7 8
|
syl3an |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. D , F >. <-> <. D , F >. Cgr <. A , C >. ) ) |
10 |
|
3simpc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
11 |
|
3simpc |
|- ( ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) -> ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) |
12 |
|
cgrcom |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. E , F >. <-> <. E , F >. Cgr <. B , C >. ) ) |
13 |
1 10 11 12
|
syl3an |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. E , F >. <-> <. E , F >. Cgr <. B , C >. ) ) |
14 |
5 9 13
|
3anbi123d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) <-> ( <. D , E >. Cgr <. A , B >. /\ <. D , F >. Cgr <. A , C >. /\ <. E , F >. Cgr <. B , C >. ) ) ) |
15 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> ( <. A , B >. Cgr <. D , E >. /\ <. A , C >. Cgr <. D , F >. /\ <. B , C >. Cgr <. E , F >. ) ) ) |
16 |
|
brcgr3 |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. D , <. E , F >. >. Cgr3 <. A , <. B , C >. >. <-> ( <. D , E >. Cgr <. A , B >. /\ <. D , F >. Cgr <. A , C >. /\ <. E , F >. Cgr <. B , C >. ) ) ) |
17 |
16
|
3com23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. D , <. E , F >. >. Cgr3 <. A , <. B , C >. >. <-> ( <. D , E >. Cgr <. A , B >. /\ <. D , F >. Cgr <. A , C >. /\ <. E , F >. Cgr <. B , C >. ) ) ) |
18 |
14 15 17
|
3bitr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. D , <. E , F >. >. <-> <. D , <. E , F >. >. Cgr3 <. A , <. B , C >. >. ) ) |