Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Properties relating betweenness and congruence
cgr3com
Next ⟩
cgr3rflx
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgr3com
Description:
Commutativity law for three-place congruence.
(Contributed by
Scott Fenton
, 5-Oct-2013)
Ref
Expression
Assertion
cgr3com
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
C
Cgr3
D
E
F
↔
D
E
F
Cgr3
A
B
C
Proof
Step
Hyp
Ref
Expression
1
id
⊢
N
∈
ℕ
→
N
∈
ℕ
2
3simpa
⊢
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
3
3simpa
⊢
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
4
cgrcom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
→
A
B
Cgr
D
E
↔
D
E
Cgr
A
B
5
1
2
3
4
syl3an
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
Cgr
D
E
↔
D
E
Cgr
A
B
6
3simpb
⊢
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
7
3simpb
⊢
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
D
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
8
cgrcom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
C
Cgr
D
F
↔
D
F
Cgr
A
C
9
1
6
7
8
syl3an
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
C
Cgr
D
F
↔
D
F
Cgr
A
C
10
3simpc
⊢
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
11
3simpc
⊢
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
12
cgrcom
⊢
N
∈
ℕ
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
B
C
Cgr
E
F
↔
E
F
Cgr
B
C
13
1
10
11
12
syl3an
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
B
C
Cgr
E
F
↔
E
F
Cgr
B
C
14
5
9
13
3anbi123d
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
Cgr
D
E
∧
A
C
Cgr
D
F
∧
B
C
Cgr
E
F
↔
D
E
Cgr
A
B
∧
D
F
Cgr
A
C
∧
E
F
Cgr
B
C
15
brcgr3
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
C
Cgr3
D
E
F
↔
A
B
Cgr
D
E
∧
A
C
Cgr
D
F
∧
B
C
Cgr
E
F
16
brcgr3
⊢
N
∈
ℕ
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
D
E
F
Cgr3
A
B
C
↔
D
E
Cgr
A
B
∧
D
F
Cgr
A
C
∧
E
F
Cgr
B
C
17
16
3com23
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
D
E
F
Cgr3
A
B
C
↔
D
E
Cgr
A
B
∧
D
F
Cgr
A
C
∧
E
F
Cgr
B
C
18
14
15
17
3bitr4d
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
C
Cgr3
D
E
F
↔
D
E
F
Cgr3
A
B
C