Metamath Proof Explorer


Theorem cgr3com

Description: Commutativity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion cgr3com NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFDEFCgr3ABC

Proof

Step Hyp Ref Expression
1 id NN
2 3simpa A𝔼NB𝔼NC𝔼NA𝔼NB𝔼N
3 3simpa D𝔼NE𝔼NF𝔼ND𝔼NE𝔼N
4 cgrcom NA𝔼NB𝔼ND𝔼NE𝔼NABCgrDEDECgrAB
5 1 2 3 4 syl3an NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrDEDECgrAB
6 3simpb A𝔼NB𝔼NC𝔼NA𝔼NC𝔼N
7 3simpb D𝔼NE𝔼NF𝔼ND𝔼NF𝔼N
8 cgrcom NA𝔼NC𝔼ND𝔼NF𝔼NACCgrDFDFCgrAC
9 1 6 7 8 syl3an NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NACCgrDFDFCgrAC
10 3simpc A𝔼NB𝔼NC𝔼NB𝔼NC𝔼N
11 3simpc D𝔼NE𝔼NF𝔼NE𝔼NF𝔼N
12 cgrcom NB𝔼NC𝔼NE𝔼NF𝔼NBCCgrEFEFCgrBC
13 1 10 11 12 syl3an NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBCCgrEFEFCgrBC
14 5 9 13 3anbi123d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrDEACCgrDFBCCgrEFDECgrABDFCgrACEFCgrBC
15 brcgr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABCgrDEACCgrDFBCCgrEF
16 brcgr3 ND𝔼NE𝔼NF𝔼NA𝔼NB𝔼NC𝔼NDEFCgr3ABCDECgrABDFCgrACEFCgrBC
17 16 3com23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NDEFCgr3ABCDECgrABDFCgrACEFCgrBC
18 14 15 17 3bitr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFDEFCgr3ABC