Metamath Proof Explorer


Theorem cgr3rflx

Description: Identity law for three-place congruence. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion cgr3rflx NA𝔼NB𝔼NC𝔼NABCCgr3ABC

Proof

Step Hyp Ref Expression
1 cgrrflx NA𝔼NB𝔼NABCgrAB
2 1 3adant3r3 NA𝔼NB𝔼NC𝔼NABCgrAB
3 cgrrflx NA𝔼NC𝔼NACCgrAC
4 3 3adant3r2 NA𝔼NB𝔼NC𝔼NACCgrAC
5 cgrrflx NB𝔼NC𝔼NBCCgrBC
6 5 3adant3r1 NA𝔼NB𝔼NC𝔼NBCCgrBC
7 brcgr3 NA𝔼NB𝔼NC𝔼NA𝔼NB𝔼NC𝔼NABCCgr3ABCABCgrABACCgrACBCCgrBC
8 7 3anidm23 NA𝔼NB𝔼NC𝔼NABCCgr3ABCABCgrABACCgrACBCCgrBC
9 2 4 6 8 mpbir3and NA𝔼NB𝔼NC𝔼NABCCgr3ABC