Metamath Proof Explorer


Theorem cgr3rflx

Description: Identity law for three-place congruence. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion cgr3rflx N A 𝔼 N B 𝔼 N C 𝔼 N A B C Cgr3 A B C

Proof

Step Hyp Ref Expression
1 cgrrflx N A 𝔼 N B 𝔼 N A B Cgr A B
2 1 3adant3r3 N A 𝔼 N B 𝔼 N C 𝔼 N A B Cgr A B
3 cgrrflx N A 𝔼 N C 𝔼 N A C Cgr A C
4 3 3adant3r2 N A 𝔼 N B 𝔼 N C 𝔼 N A C Cgr A C
5 cgrrflx N B 𝔼 N C 𝔼 N B C Cgr B C
6 5 3adant3r1 N A 𝔼 N B 𝔼 N C 𝔼 N B C Cgr B C
7 brcgr3 N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N A B C Cgr3 A B C A B Cgr A B A C Cgr A C B C Cgr B C
8 7 3anidm23 N A 𝔼 N B 𝔼 N C 𝔼 N A B C Cgr3 A B C A B Cgr A B A C Cgr A C B C Cgr B C
9 2 4 6 8 mpbir3and N A 𝔼 N B 𝔼 N C 𝔼 N A B C Cgr3 A B C