Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Properties relating betweenness and congruence
cgr3rflx
Next ⟩
cgrxfr
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgr3rflx
Description:
Identity law for three-place congruence.
(Contributed by
Scott Fenton
, 6-Oct-2013)
Ref
Expression
Assertion
cgr3rflx
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
B
C
Cgr3
A
B
C
Proof
Step
Hyp
Ref
Expression
1
cgrrflx
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
→
A
B
Cgr
A
B
2
1
3adant3r3
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
B
Cgr
A
B
3
cgrrflx
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
C
Cgr
A
C
4
3
3adant3r2
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
C
Cgr
A
C
5
cgrrflx
⊢
N
∈
ℕ
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
B
C
Cgr
B
C
6
5
3adant3r1
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
B
C
Cgr
B
C
7
brcgr3
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
B
C
Cgr3
A
B
C
↔
A
B
Cgr
A
B
∧
A
C
Cgr
A
C
∧
B
C
Cgr
B
C
8
7
3anidm23
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
B
C
Cgr3
A
B
C
↔
A
B
Cgr
A
B
∧
A
C
Cgr
A
C
∧
B
C
Cgr
B
C
9
2
4
6
8
mpbir3and
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
B
C
Cgr3
A
B
C