Metamath Proof Explorer


Theorem brifs2

Description: Change some conditions for inner five segment predicate. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion brifs2 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDInnerFiveSegEFGHBBtwnACABCCgr3EFGADCgrEHCDCgrGH

Proof

Step Hyp Ref Expression
1 brifs NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDInnerFiveSegEFGHBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGH
2 simpr1l NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBBtwnAC
3 3simpa BBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBBtwnACFBtwnEGACCgrEGBCCgrFG
4 simp11 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NN
5 simp12 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NA𝔼N
6 simp13 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NB𝔼N
7 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NC𝔼N
8 simp23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NE𝔼N
9 simp31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NF𝔼N
10 simp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NG𝔼N
11 cgrsub NA𝔼NB𝔼NC𝔼NE𝔼NF𝔼NG𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGABCgrEF
12 4 5 6 7 8 9 10 11 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGABCgrEF
13 3 12 syl5 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHABCgrEF
14 13 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHABCgrEF
15 simpr2l NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHACCgrEG
16 simpr2r NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBCCgrFG
17 14 15 16 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHABCgrEFACCgrEGBCCgrFG
18 17 ex NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHABCgrEFACCgrEGBCCgrFG
19 brcgr3 NA𝔼NB𝔼NC𝔼NE𝔼NF𝔼NG𝔼NABCCgr3EFGABCgrEFACCgrEGBCCgrFG
20 4 5 6 7 8 9 10 19 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCCgr3EFGABCgrEFACCgrEGBCCgrFG
21 18 20 sylibrd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHABCCgr3EFG
22 21 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHABCCgr3EFG
23 simpr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHADCgrEHCDCgrGH
24 2 22 23 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBBtwnACABCCgr3EFGADCgrEHCDCgrGH
25 simpr1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACABCCgr3EFGADCgrEHCDCgrGHBBtwnAC
26 3simpa BBtwnACABCCgr3EFGADCgrEHCDCgrGHBBtwnACABCCgr3EFG
27 btwnxfr NA𝔼NB𝔼NC𝔼NE𝔼NF𝔼NG𝔼NBBtwnACABCCgr3EFGFBtwnEG
28 4 5 6 7 8 9 10 27 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACABCCgr3EFGFBtwnEG
29 26 28 syl5 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACABCCgr3EFGADCgrEHCDCgrGHFBtwnEG
30 29 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACABCCgr3EFGADCgrEHCDCgrGHFBtwnEG
31 25 30 jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACABCCgr3EFGADCgrEHCDCgrGHBBtwnACFBtwnEG
32 3simpc ABCgrEFACCgrEGBCCgrFGACCgrEGBCCgrFG
33 20 32 syl6bi NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCCgr3EFGACCgrEGBCCgrFG
34 33 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCCgr3EFGACCgrEGBCCgrFG
35 34 3ad2antr2 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACABCCgr3EFGADCgrEHCDCgrGHACCgrEGBCCgrFG
36 simpr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACABCCgr3EFGADCgrEHCDCgrGHADCgrEHCDCgrGH
37 31 35 36 3jca NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACABCCgr3EFGADCgrEHCDCgrGHBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGH
38 24 37 impbida NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGACCgrEGBCCgrFGADCgrEHCDCgrGHBBtwnACABCCgr3EFGADCgrEHCDCgrGH
39 1 38 bitrd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDInnerFiveSegEFGHBBtwnACABCCgr3EFGADCgrEHCDCgrGH