Metamath Proof Explorer


Theorem brifs2

Description: Change some conditions for inner five segment predicate. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion brifs2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D InnerFiveSeg E F G H B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H

Proof

Step Hyp Ref Expression
1 brifs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D InnerFiveSeg E F G H B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H
2 simpr1l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B Btwn A C
3 3simpa B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G
4 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N N
5 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A 𝔼 N
6 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B 𝔼 N
7 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C 𝔼 N
8 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E 𝔼 N
9 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N F 𝔼 N
10 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N G 𝔼 N
11 cgrsub N A 𝔼 N B 𝔼 N C 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A B Cgr E F
12 4 5 6 7 8 9 10 11 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A B Cgr E F
13 3 12 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A B Cgr E F
14 13 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A B Cgr E F
15 simpr2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A C Cgr E G
16 simpr2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B C Cgr F G
17 14 15 16 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A B Cgr E F A C Cgr E G B C Cgr F G
18 17 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A B Cgr E F A C Cgr E G B C Cgr F G
19 brcgr3 N A 𝔼 N B 𝔼 N C 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N A B C Cgr3 E F G A B Cgr E F A C Cgr E G B C Cgr F G
20 4 5 6 7 8 9 10 19 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C Cgr3 E F G A B Cgr E F A C Cgr E G B C Cgr F G
21 18 20 sylibrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A B C Cgr3 E F G
22 21 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A B C Cgr3 E F G
23 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H A D Cgr E H C D Cgr G H
24 2 22 23 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H
25 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H B Btwn A C
26 3simpa B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H B Btwn A C A B C Cgr3 E F G
27 btwnxfr N A 𝔼 N B 𝔼 N C 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N B Btwn A C A B C Cgr3 E F G F Btwn E G
28 4 5 6 7 8 9 10 27 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G F Btwn E G
29 26 28 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H F Btwn E G
30 29 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H F Btwn E G
31 25 30 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H B Btwn A C F Btwn E G
32 3simpc A B Cgr E F A C Cgr E G B C Cgr F G A C Cgr E G B C Cgr F G
33 20 32 syl6bi N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C Cgr3 E F G A C Cgr E G B C Cgr F G
34 33 imp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C Cgr3 E F G A C Cgr E G B C Cgr F G
35 34 3ad2antr2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H A C Cgr E G B C Cgr F G
36 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H A D Cgr E H C D Cgr G H
37 31 35 36 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H
38 24 37 impbida N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H
39 1 38 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D InnerFiveSeg E F G H B Btwn A C A B C Cgr3 E F G A D Cgr E H C D Cgr G H