Metamath Proof Explorer


Definition df-segle

Description: Define the segment length comparison relationship. This relationship expresses that the segment A B is no longer than C D . In this section, we establish various properties of this relationship showing that it is a transitive, reflexive relationship on pairs of points that is substitutive under congruence. Definition 5.4 of Schwabhauser p. 41. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion df-segle Seg = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csegle Seg
1 vp 𝑝
2 vq 𝑞
3 vn 𝑛
4 cn
5 va 𝑎
6 cee 𝔼
7 3 cv 𝑛
8 7 6 cfv ( 𝔼 ‘ 𝑛 )
9 vb 𝑏
10 vc 𝑐
11 vd 𝑑
12 1 cv 𝑝
13 5 cv 𝑎
14 9 cv 𝑏
15 13 14 cop 𝑎 , 𝑏
16 12 15 wceq 𝑝 = ⟨ 𝑎 , 𝑏
17 2 cv 𝑞
18 10 cv 𝑐
19 11 cv 𝑑
20 18 19 cop 𝑐 , 𝑑
21 17 20 wceq 𝑞 = ⟨ 𝑐 , 𝑑
22 vy 𝑦
23 22 cv 𝑦
24 cbtwn Btwn
25 23 20 24 wbr 𝑦 Btwn ⟨ 𝑐 , 𝑑
26 ccgr Cgr
27 18 23 cop 𝑐 , 𝑦
28 15 27 26 wbr 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦
29 25 28 wa ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ )
30 29 22 8 wrex 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ )
31 16 21 30 w3a ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) )
32 31 11 8 wrex 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) )
33 32 10 8 wrex 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) )
34 33 9 8 wrex 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) )
35 34 5 8 wrex 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) )
36 35 3 4 wrex 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) )
37 36 1 2 copab { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) ) }
38 0 37 wceq Seg = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑦 Btwn ⟨ 𝑐 , 𝑑 ⟩ ∧ ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑐 , 𝑦 ⟩ ) ) }