Description: Define the set of subspaces of a Hilbert space. See issh for its membership relation. Basically, a subspace is a subset of a Hilbert space that acts like a vector space. From Definition of Beran p. 95. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sh | |- SH = { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csh | |- SH |
|
| 1 | vh | |- h |
|
| 2 | chba | |- ~H |
|
| 3 | 2 | cpw | |- ~P ~H |
| 4 | c0v | |- 0h |
|
| 5 | 1 | cv | |- h |
| 6 | 4 5 | wcel | |- 0h e. h |
| 7 | cva | |- +h |
|
| 8 | 5 5 | cxp | |- ( h X. h ) |
| 9 | 7 8 | cima | |- ( +h " ( h X. h ) ) |
| 10 | 9 5 | wss | |- ( +h " ( h X. h ) ) C_ h |
| 11 | csm | |- .h |
|
| 12 | cc | |- CC |
|
| 13 | 12 5 | cxp | |- ( CC X. h ) |
| 14 | 11 13 | cima | |- ( .h " ( CC X. h ) ) |
| 15 | 14 5 | wss | |- ( .h " ( CC X. h ) ) C_ h |
| 16 | 6 10 15 | w3a | |- ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) |
| 17 | 16 1 3 | crab | |- { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) } |
| 18 | 0 17 | wceq | |- SH = { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) } |