Metamath Proof Explorer


Definition df-sh

Description: Define the set of subspaces of a Hilbert space. See issh for its membership relation. Basically, a subspace is a subset of a Hilbert space that acts like a vector space. From Definition of Beran p. 95. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion df-sh S=h𝒫|0h+h×hh×hh

Detailed syntax breakdown

Step Hyp Ref Expression
0 csh classS
1 vh setvarh
2 chba class
3 2 cpw class𝒫
4 c0v class0
5 1 cv setvarh
6 4 5 wcel wff0h
7 cva class+
8 5 5 cxp classh×h
9 7 8 cima class+h×h
10 9 5 wss wff+h×hh
11 csm class
12 cc class
13 12 5 cxp class×h
14 11 13 cima class×h
15 14 5 wss wff×hh
16 6 10 15 w3a wff0h+h×hh×hh
17 16 1 3 crab classh𝒫|0h+h×hh×hh
18 0 17 wceq wffS=h𝒫|0h+h×hh×hh