Metamath Proof Explorer


Theorem issh

Description: Subspace H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion issh HSH0H+H×HH×HH

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 elpw2 H𝒫H
3 3anass 0H+H×HH×HH0H+H×HH×HH
4 2 3 anbi12i H𝒫0H+H×HH×HHH0H+H×HH×HH
5 eleq2 h=H0h0H
6 id h=Hh=H
7 6 sqxpeqd h=Hh×h=H×H
8 7 imaeq2d h=H+h×h=+H×H
9 8 6 sseq12d h=H+h×hh+H×HH
10 xpeq2 h=H×h=×H
11 10 imaeq2d h=H×h=×H
12 11 6 sseq12d h=H×hh×HH
13 5 9 12 3anbi123d h=H0h+h×hh×hh0H+H×HH×HH
14 df-sh S=h𝒫|0h+h×hh×hh
15 13 14 elrab2 HSH𝒫0H+H×HH×HH
16 anass H0H+H×HH×HHH0H+H×HH×HH
17 4 15 16 3bitr4i HSH0H+H×HH×HH