Metamath Proof Explorer


Definition df-tgrp

Description: Define the class of all translation groups. k is normally a member of HL . Each base set is the set of all lattice translations with respect to a hyperplane w , and the operation is function composition. Similar to definition of G in Crawley p. 116, third paragraph (which defines this for geomodular lattices). (Contributed by NM, 5-Jun-2013)

Ref Expression
Assertion df-tgrp
|- TGrp = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctgrp
 |-  TGrp
1 vk
 |-  k
2 cvv
 |-  _V
3 vw
 |-  w
4 clh
 |-  LHyp
5 1 cv
 |-  k
6 5 4 cfv
 |-  ( LHyp ` k )
7 cbs
 |-  Base
8 cnx
 |-  ndx
9 8 7 cfv
 |-  ( Base ` ndx )
10 cltrn
 |-  LTrn
11 5 10 cfv
 |-  ( LTrn ` k )
12 3 cv
 |-  w
13 12 11 cfv
 |-  ( ( LTrn ` k ) ` w )
14 9 13 cop
 |-  <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >.
15 cplusg
 |-  +g
16 8 15 cfv
 |-  ( +g ` ndx )
17 vf
 |-  f
18 vg
 |-  g
19 17 cv
 |-  f
20 18 cv
 |-  g
21 19 20 ccom
 |-  ( f o. g )
22 17 18 13 13 21 cmpo
 |-  ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) )
23 16 22 cop
 |-  <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >.
24 14 23 cpr
 |-  { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. }
25 3 6 24 cmpt
 |-  ( w e. ( LHyp ` k ) |-> { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. } )
26 1 2 25 cmpt
 |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. } ) )
27 0 26 wceq
 |-  TGrp = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. } ) )