Step |
Hyp |
Ref |
Expression |
1 |
|
tgrpset.h |
|- H = ( LHyp ` K ) |
2 |
|
elex |
|- ( K e. V -> K e. _V ) |
3 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
4 |
3 1
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
5 |
|
fveq2 |
|- ( k = K -> ( LTrn ` k ) = ( LTrn ` K ) ) |
6 |
5
|
fveq1d |
|- ( k = K -> ( ( LTrn ` k ) ` w ) = ( ( LTrn ` K ) ` w ) ) |
7 |
6
|
opeq2d |
|- ( k = K -> <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. = <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. ) |
8 |
|
eqidd |
|- ( k = K -> ( f o. g ) = ( f o. g ) ) |
9 |
6 6 8
|
mpoeq123dv |
|- ( k = K -> ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) = ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) ) |
10 |
9
|
opeq2d |
|- ( k = K -> <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. = <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. ) |
11 |
7 10
|
preq12d |
|- ( k = K -> { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. } = { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. } ) |
12 |
4 11
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. } ) = ( w e. H |-> { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. } ) ) |
13 |
|
df-tgrp |
|- TGrp = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. } ) ) |
14 |
12 13 1
|
mptfvmpt |
|- ( K e. _V -> ( TGrp ` K ) = ( w e. H |-> { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. } ) ) |
15 |
2 14
|
syl |
|- ( K e. V -> ( TGrp ` K ) = ( w e. H |-> { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. } ) ) |