Step |
Hyp |
Ref |
Expression |
1 |
|
tgrpset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
3 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
7 |
6
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 = 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 ) |
8 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ∘ 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
9 |
6 6 8
|
mpoeq123dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
10 |
9
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 = 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 ) |
11 |
7 10
|
preq12d |
⊢ ( 𝑘 = 𝐾 → { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } ) |
12 |
4 11
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } ) = ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } ) ) |
13 |
|
df-tgrp |
⊢ TGrp = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } ) ) |
14 |
12 13 1
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( TGrp ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } ) ) |
15 |
2 14
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( TGrp ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } ) ) |