Metamath Proof Explorer


Definition df-tgrp

Description: Define the class of all translation groups. k is normally a member of HL . Each base set is the set of all lattice translations with respect to a hyperplane w , and the operation is function composition. Similar to definition of G in Crawley p. 116, third paragraph (which defines this for geomodular lattices). (Contributed by NM, 5-Jun-2013)

Ref Expression
Assertion df-tgrp TGrp = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓𝑔 ) ) ⟩ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctgrp TGrp
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 cbs Base
8 cnx ndx
9 8 7 cfv ( Base ‘ ndx )
10 cltrn LTrn
11 5 10 cfv ( LTrn ‘ 𝑘 )
12 3 cv 𝑤
13 12 11 cfv ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )
14 9 13 cop ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟩
15 cplusg +g
16 8 15 cfv ( +g ‘ ndx )
17 vf 𝑓
18 vg 𝑔
19 17 cv 𝑓
20 18 cv 𝑔
21 19 20 ccom ( 𝑓𝑔 )
22 17 18 13 13 21 cmpo ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓𝑔 ) )
23 16 22 cop ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓𝑔 ) ) ⟩
24 14 23 cpr { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓𝑔 ) ) ⟩ }
25 3 6 24 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓𝑔 ) ) ⟩ } )
26 1 2 25 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓𝑔 ) ) ⟩ } ) )
27 0 26 wceq TGrp = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓𝑔 ) ) ⟩ } ) )