Metamath Proof Explorer


Definition df-tgrp

Description: Define the class of all translation groups. k is normally a member of HL . Each base set is the set of all lattice translations with respect to a hyperplane w , and the operation is function composition. Similar to definition of G in Crawley p. 116, third paragraph (which defines this for geomodular lattices). (Contributed by NM, 5-Jun-2013)

Ref Expression
Assertion df-tgrp TGrp=kVwLHypkBasendxLTrnkw+ndxfLTrnkw,gLTrnkwfg

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctgrp classTGrp
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 cbs classBase
8 cnx classndx
9 8 7 cfv classBasendx
10 cltrn classLTrn
11 5 10 cfv classLTrnk
12 3 cv setvarw
13 12 11 cfv classLTrnkw
14 9 13 cop classBasendxLTrnkw
15 cplusg class+𝑔
16 8 15 cfv class+ndx
17 vf setvarf
18 vg setvarg
19 17 cv setvarf
20 18 cv setvarg
21 19 20 ccom classfg
22 17 18 13 13 21 cmpo classfLTrnkw,gLTrnkwfg
23 16 22 cop class+ndxfLTrnkw,gLTrnkwfg
24 14 23 cpr classBasendxLTrnkw+ndxfLTrnkw,gLTrnkwfg
25 3 6 24 cmpt classwLHypkBasendxLTrnkw+ndxfLTrnkw,gLTrnkwfg
26 1 2 25 cmpt classkVwLHypkBasendxLTrnkw+ndxfLTrnkw,gLTrnkwfg
27 0 26 wceq wffTGrp=kVwLHypkBasendxLTrnkw+ndxfLTrnkw,gLTrnkwfg