| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ctransport |  |-  TransportTo | 
						
							| 1 |  | vp |  |-  p | 
						
							| 2 |  | vq |  |-  q | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | vn |  |-  n | 
						
							| 5 |  | cn |  |-  NN | 
						
							| 6 | 1 | cv |  |-  p | 
						
							| 7 |  | cee |  |-  EE | 
						
							| 8 | 4 | cv |  |-  n | 
						
							| 9 | 8 7 | cfv |  |-  ( EE ` n ) | 
						
							| 10 | 9 9 | cxp |  |-  ( ( EE ` n ) X. ( EE ` n ) ) | 
						
							| 11 | 6 10 | wcel |  |-  p e. ( ( EE ` n ) X. ( EE ` n ) ) | 
						
							| 12 | 2 | cv |  |-  q | 
						
							| 13 | 12 10 | wcel |  |-  q e. ( ( EE ` n ) X. ( EE ` n ) ) | 
						
							| 14 |  | c1st |  |-  1st | 
						
							| 15 | 12 14 | cfv |  |-  ( 1st ` q ) | 
						
							| 16 |  | c2nd |  |-  2nd | 
						
							| 17 | 12 16 | cfv |  |-  ( 2nd ` q ) | 
						
							| 18 | 15 17 | wne |  |-  ( 1st ` q ) =/= ( 2nd ` q ) | 
						
							| 19 | 11 13 18 | w3a |  |-  ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) | 
						
							| 20 | 3 | cv |  |-  x | 
						
							| 21 |  | vr |  |-  r | 
						
							| 22 |  | cbtwn |  |-  Btwn | 
						
							| 23 | 21 | cv |  |-  r | 
						
							| 24 | 15 23 | cop |  |-  <. ( 1st ` q ) , r >. | 
						
							| 25 | 17 24 22 | wbr |  |-  ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. | 
						
							| 26 | 17 23 | cop |  |-  <. ( 2nd ` q ) , r >. | 
						
							| 27 |  | ccgr |  |-  Cgr | 
						
							| 28 | 26 6 27 | wbr |  |-  <. ( 2nd ` q ) , r >. Cgr p | 
						
							| 29 | 25 28 | wa |  |-  ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) | 
						
							| 30 | 29 21 9 | crio |  |-  ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) | 
						
							| 31 | 20 30 | wceq |  |-  x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) | 
						
							| 32 | 19 31 | wa |  |-  ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) | 
						
							| 33 | 32 4 5 | wrex |  |-  E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) | 
						
							| 34 | 33 1 2 3 | coprab |  |-  { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } | 
						
							| 35 | 0 34 | wceq |  |-  TransportTo = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } |