| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctransport |
|- TransportTo |
| 1 |
|
vp |
|- p |
| 2 |
|
vq |
|- q |
| 3 |
|
vx |
|- x |
| 4 |
|
vn |
|- n |
| 5 |
|
cn |
|- NN |
| 6 |
1
|
cv |
|- p |
| 7 |
|
cee |
|- EE |
| 8 |
4
|
cv |
|- n |
| 9 |
8 7
|
cfv |
|- ( EE ` n ) |
| 10 |
9 9
|
cxp |
|- ( ( EE ` n ) X. ( EE ` n ) ) |
| 11 |
6 10
|
wcel |
|- p e. ( ( EE ` n ) X. ( EE ` n ) ) |
| 12 |
2
|
cv |
|- q |
| 13 |
12 10
|
wcel |
|- q e. ( ( EE ` n ) X. ( EE ` n ) ) |
| 14 |
|
c1st |
|- 1st |
| 15 |
12 14
|
cfv |
|- ( 1st ` q ) |
| 16 |
|
c2nd |
|- 2nd |
| 17 |
12 16
|
cfv |
|- ( 2nd ` q ) |
| 18 |
15 17
|
wne |
|- ( 1st ` q ) =/= ( 2nd ` q ) |
| 19 |
11 13 18
|
w3a |
|- ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) |
| 20 |
3
|
cv |
|- x |
| 21 |
|
vr |
|- r |
| 22 |
|
cbtwn |
|- Btwn |
| 23 |
21
|
cv |
|- r |
| 24 |
15 23
|
cop |
|- <. ( 1st ` q ) , r >. |
| 25 |
17 24 22
|
wbr |
|- ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. |
| 26 |
17 23
|
cop |
|- <. ( 2nd ` q ) , r >. |
| 27 |
|
ccgr |
|- Cgr |
| 28 |
26 6 27
|
wbr |
|- <. ( 2nd ` q ) , r >. Cgr p |
| 29 |
25 28
|
wa |
|- ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) |
| 30 |
29 21 9
|
crio |
|- ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) |
| 31 |
20 30
|
wceq |
|- x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) |
| 32 |
19 31
|
wa |
|- ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) |
| 33 |
32 4 5
|
wrex |
|- E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) |
| 34 |
33 1 2 3
|
coprab |
|- { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } |
| 35 |
0 34
|
wceq |
|- TransportTo = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } |