Metamath Proof Explorer


Definition df-transport

Description: Define the segment transport function. See fvtransport for an explanation of the function. (Contributed by Scott Fenton, 18-Oct-2013)

Ref Expression
Assertion df-transport
|- TransportTo = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctransport
 |-  TransportTo
1 vp
 |-  p
2 vq
 |-  q
3 vx
 |-  x
4 vn
 |-  n
5 cn
 |-  NN
6 1 cv
 |-  p
7 cee
 |-  EE
8 4 cv
 |-  n
9 8 7 cfv
 |-  ( EE ` n )
10 9 9 cxp
 |-  ( ( EE ` n ) X. ( EE ` n ) )
11 6 10 wcel
 |-  p e. ( ( EE ` n ) X. ( EE ` n ) )
12 2 cv
 |-  q
13 12 10 wcel
 |-  q e. ( ( EE ` n ) X. ( EE ` n ) )
14 c1st
 |-  1st
15 12 14 cfv
 |-  ( 1st ` q )
16 c2nd
 |-  2nd
17 12 16 cfv
 |-  ( 2nd ` q )
18 15 17 wne
 |-  ( 1st ` q ) =/= ( 2nd ` q )
19 11 13 18 w3a
 |-  ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) )
20 3 cv
 |-  x
21 vr
 |-  r
22 cbtwn
 |-  Btwn
23 21 cv
 |-  r
24 15 23 cop
 |-  <. ( 1st ` q ) , r >.
25 17 24 22 wbr
 |-  ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >.
26 17 23 cop
 |-  <. ( 2nd ` q ) , r >.
27 ccgr
 |-  Cgr
28 26 6 27 wbr
 |-  <. ( 2nd ` q ) , r >. Cgr p
29 25 28 wa
 |-  ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p )
30 29 21 9 crio
 |-  ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) )
31 20 30 wceq
 |-  x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) )
32 19 31 wa
 |-  ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) )
33 32 4 5 wrex
 |-  E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) )
34 33 1 2 3 coprab
 |-  { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) }
35 0 34 wceq
 |-  TransportTo = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) }