Metamath Proof Explorer


Definition df-transport

Description: Define the segment transport function. See fvtransport for an explanation of the function. (Contributed by Scott Fenton, 18-Oct-2013)

Ref Expression
Assertion df-transport TransportTo = { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctransport TransportTo
1 vp 𝑝
2 vq 𝑞
3 vx 𝑥
4 vn 𝑛
5 cn
6 1 cv 𝑝
7 cee 𝔼
8 4 cv 𝑛
9 8 7 cfv ( 𝔼 ‘ 𝑛 )
10 9 9 cxp ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) )
11 6 10 wcel 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) )
12 2 cv 𝑞
13 12 10 wcel 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) )
14 c1st 1st
15 12 14 cfv ( 1st𝑞 )
16 c2nd 2nd
17 12 16 cfv ( 2nd𝑞 )
18 15 17 wne ( 1st𝑞 ) ≠ ( 2nd𝑞 )
19 11 13 18 w3a ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) )
20 3 cv 𝑥
21 vr 𝑟
22 cbtwn Btwn
23 21 cv 𝑟
24 15 23 cop ⟨ ( 1st𝑞 ) , 𝑟
25 17 24 22 wbr ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟
26 17 23 cop ⟨ ( 2nd𝑞 ) , 𝑟
27 ccgr Cgr
28 26 6 27 wbr ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝
29 25 28 wa ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 )
30 29 21 9 crio ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) )
31 20 30 wceq 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) )
32 19 31 wa ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) )
33 32 4 5 wrex 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) )
34 33 1 2 3 coprab { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) }
35 0 34 wceq TransportTo = { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) }