Metamath Proof Explorer


Theorem fvtransport

Description: Calculate the value of the TransportTo function. This function takes four points, A through D , where C and D are distinct. It then returns the point that extends C D by the length of A B . (Contributed by Scott Fenton, 18-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvtransport ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 df-ov ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) = ( TransportTo ‘ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ )
2 opelxpi ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) )
3 2 3ad2ant1 ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) )
4 opelxpi ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) )
5 4 3ad2ant2 ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) )
6 simp3 ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → 𝐶𝐷 )
7 op1stg ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) = 𝐶 )
8 7 3ad2ant2 ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) = 𝐶 )
9 op2ndg ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) = 𝐷 )
10 9 3ad2ant2 ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) = 𝐷 )
11 6 8 10 3netr4d ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) )
12 3 5 11 3jca ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) )
13 8 opeq1d ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ = ⟨ 𝐶 , 𝑟 ⟩ )
14 10 13 breq12d ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ↔ 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ) )
15 10 opeq1d ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ = ⟨ 𝐷 , 𝑟 ⟩ )
16 15 breq1d ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ↔ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
17 14 16 anbi12d ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
18 17 riotabidv ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
19 18 eqcomd ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
20 12 19 jca ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
21 fveq2 ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) )
22 21 sqxpeqd ( 𝑛 = 𝑁 → ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) = ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) )
23 22 eleq2d ( 𝑛 = 𝑁 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) )
24 22 eleq2d ( 𝑛 = 𝑁 → ( ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ) )
25 23 24 3anbi12d ( 𝑛 = 𝑁 → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ) )
26 21 riotaeqdv ( 𝑛 = 𝑁 → ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
27 26 eqeq2d ( 𝑛 = 𝑁 → ( ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
28 25 27 anbi12d ( 𝑛 = 𝑁 → ( ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ↔ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) )
29 28 rspcev ( ( 𝑁 ∈ ℕ ∧ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑁 ) × ( 𝔼 ‘ 𝑁 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) → ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
30 20 29 sylan2 ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
31 df-br ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ TransportTo ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ⟨ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ , ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ⟩ ∈ TransportTo )
32 df-transport TransportTo = { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) }
33 32 eleq2i ( ⟨ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ , ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ⟩ ∈ TransportTo ↔ ⟨ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ , ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ⟩ ∈ { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) } )
34 opex 𝐴 , 𝐵 ⟩ ∈ V
35 opex 𝐶 , 𝐷 ⟩ ∈ V
36 riotaex ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ∈ V
37 eleq1 ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) )
38 37 3anbi1d ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ) )
39 breq2 ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ↔ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
40 39 anbi2d ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ↔ ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
41 40 riotabidv ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
42 41 eqeq2d ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ↔ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
43 38 42 anbi12d ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) )
44 43 rexbidv ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) )
45 eleq1 ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ) )
46 fveq2 ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( 1st𝑞 ) = ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) )
47 fveq2 ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( 2nd𝑞 ) = ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) )
48 46 47 neeq12d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ↔ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) )
49 45 48 3anbi23d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ) )
50 46 opeq1d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ⟨ ( 1st𝑞 ) , 𝑟 ⟩ = ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ )
51 47 50 breq12d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ↔ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ) )
52 47 opeq1d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ = ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ )
53 52 breq1d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ↔ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
54 51 53 anbi12d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
55 54 riotabidv ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
56 55 eqeq2d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
57 49 56 anbi12d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ↔ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) )
58 57 rexbidv ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) )
59 eqeq1 ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
60 59 anbi2d ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ↔ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) )
61 60 rexbidv ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) )
62 44 58 61 eloprabg ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ V ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ∈ V ) → ( ⟨ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ , ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ⟩ ∈ { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) } ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) ) )
63 34 35 36 62 mp3an ( ⟨ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ , ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ⟩ ∈ { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) } ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
64 31 33 63 3bitri ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ TransportTo ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
65 funtransport Fun TransportTo
66 funbrfv ( Fun TransportTo → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ TransportTo ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( TransportTo ‘ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
67 65 66 ax-mp ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ TransportTo ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( TransportTo ‘ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
68 64 67 sylbir ( ∃ 𝑛 ∈ ℕ ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ≠ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) Btwn ⟨ ( 1st ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ ∧ ⟨ ( 2nd ‘ ⟨ 𝐶 , 𝐷 ⟩ ) , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) → ( TransportTo ‘ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
69 30 68 syl ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( TransportTo ‘ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
70 1 69 syl5eq ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )