Metamath Proof Explorer


Theorem fvtransport

Description: Calculate the value of the TransportTo function. This function takes four points, A through D , where C and D are distinct. It then returns the point that extends C D by the length of A B . (Contributed by Scott Fenton, 18-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvtransport N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B TransportTo C D = ι r 𝔼 N | D Btwn C r D r Cgr A B

Proof

Step Hyp Ref Expression
1 df-ov A B TransportTo C D = TransportTo A B C D
2 opelxpi A 𝔼 N B 𝔼 N A B 𝔼 N × 𝔼 N
3 2 3ad2ant1 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B 𝔼 N × 𝔼 N
4 opelxpi C 𝔼 N D 𝔼 N C D 𝔼 N × 𝔼 N
5 4 3ad2ant2 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D C D 𝔼 N × 𝔼 N
6 simp3 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D C D
7 op1stg C 𝔼 N D 𝔼 N 1 st C D = C
8 7 3ad2ant2 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D 1 st C D = C
9 op2ndg C 𝔼 N D 𝔼 N 2 nd C D = D
10 9 3ad2ant2 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D 2 nd C D = D
11 6 8 10 3netr4d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D 1 st C D 2 nd C D
12 3 5 11 3jca A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N 1 st C D 2 nd C D
13 8 opeq1d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D 1 st C D r = C r
14 10 13 breq12d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D 2 nd C D Btwn 1 st C D r D Btwn C r
15 10 opeq1d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D 2 nd C D r = D r
16 15 breq1d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D 2 nd C D r Cgr A B D r Cgr A B
17 14 16 anbi12d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B D Btwn C r D r Cgr A B
18 17 riotabidv A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D ι r 𝔼 N | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B = ι r 𝔼 N | D Btwn C r D r Cgr A B
19 18 eqcomd A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 N | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
20 12 19 jca A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 N | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
21 fveq2 n = N 𝔼 n = 𝔼 N
22 21 sqxpeqd n = N 𝔼 n × 𝔼 n = 𝔼 N × 𝔼 N
23 22 eleq2d n = N A B 𝔼 n × 𝔼 n A B 𝔼 N × 𝔼 N
24 22 eleq2d n = N C D 𝔼 n × 𝔼 n C D 𝔼 N × 𝔼 N
25 23 24 3anbi12d n = N A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N 1 st C D 2 nd C D
26 21 riotaeqdv n = N ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B = ι r 𝔼 N | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
27 26 eqeq2d n = N ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 N | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
28 25 27 anbi12d n = N A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 N | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
29 28 rspcev N A B 𝔼 N × 𝔼 N C D 𝔼 N × 𝔼 N 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 N | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
30 20 29 sylan2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
31 df-br A B C D TransportTo ι r 𝔼 N | D Btwn C r D r Cgr A B A B C D ι r 𝔼 N | D Btwn C r D r Cgr A B TransportTo
32 df-transport TransportTo = p q x | n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
33 32 eleq2i A B C D ι r 𝔼 N | D Btwn C r D r Cgr A B TransportTo A B C D ι r 𝔼 N | D Btwn C r D r Cgr A B p q x | n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
34 opex A B V
35 opex C D V
36 riotaex ι r 𝔼 N | D Btwn C r D r Cgr A B V
37 eleq1 p = A B p 𝔼 n × 𝔼 n A B 𝔼 n × 𝔼 n
38 37 3anbi1d p = A B p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q A B 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q
39 breq2 p = A B 2 nd q r Cgr p 2 nd q r Cgr A B
40 39 anbi2d p = A B 2 nd q Btwn 1 st q r 2 nd q r Cgr p 2 nd q Btwn 1 st q r 2 nd q r Cgr A B
41 40 riotabidv p = A B ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr A B
42 41 eqeq2d p = A B x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr A B
43 38 42 anbi12d p = A B p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p A B 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr A B
44 43 rexbidv p = A B n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p n A B 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr A B
45 eleq1 q = C D q 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n
46 fveq2 q = C D 1 st q = 1 st C D
47 fveq2 q = C D 2 nd q = 2 nd C D
48 46 47 neeq12d q = C D 1 st q 2 nd q 1 st C D 2 nd C D
49 45 48 3anbi23d q = C D A B 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D
50 46 opeq1d q = C D 1 st q r = 1 st C D r
51 47 50 breq12d q = C D 2 nd q Btwn 1 st q r 2 nd C D Btwn 1 st C D r
52 47 opeq1d q = C D 2 nd q r = 2 nd C D r
53 52 breq1d q = C D 2 nd q r Cgr A B 2 nd C D r Cgr A B
54 51 53 anbi12d q = C D 2 nd q Btwn 1 st q r 2 nd q r Cgr A B 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
55 54 riotabidv q = C D ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
56 55 eqeq2d q = C D x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr A B x = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
57 49 56 anbi12d q = C D A B 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr A B A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D x = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
58 57 rexbidv q = C D n A B 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr A B n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D x = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
59 eqeq1 x = ι r 𝔼 N | D Btwn C r D r Cgr A B x = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
60 59 anbi2d x = ι r 𝔼 N | D Btwn C r D r Cgr A B A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D x = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
61 60 rexbidv x = ι r 𝔼 N | D Btwn C r D r Cgr A B n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D x = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
62 44 58 61 eloprabg A B V C D V ι r 𝔼 N | D Btwn C r D r Cgr A B V A B C D ι r 𝔼 N | D Btwn C r D r Cgr A B p q x | n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
63 34 35 36 62 mp3an A B C D ι r 𝔼 N | D Btwn C r D r Cgr A B p q x | n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
64 31 33 63 3bitri A B C D TransportTo ι r 𝔼 N | D Btwn C r D r Cgr A B n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B
65 funtransport Fun TransportTo
66 funbrfv Fun TransportTo A B C D TransportTo ι r 𝔼 N | D Btwn C r D r Cgr A B TransportTo A B C D = ι r 𝔼 N | D Btwn C r D r Cgr A B
67 65 66 ax-mp A B C D TransportTo ι r 𝔼 N | D Btwn C r D r Cgr A B TransportTo A B C D = ι r 𝔼 N | D Btwn C r D r Cgr A B
68 64 67 sylbir n A B 𝔼 n × 𝔼 n C D 𝔼 n × 𝔼 n 1 st C D 2 nd C D ι r 𝔼 N | D Btwn C r D r Cgr A B = ι r 𝔼 n | 2 nd C D Btwn 1 st C D r 2 nd C D r Cgr A B TransportTo A B C D = ι r 𝔼 N | D Btwn C r D r Cgr A B
69 30 68 syl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D TransportTo A B C D = ι r 𝔼 N | D Btwn C r D r Cgr A B
70 1 69 syl5eq N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B TransportTo C D = ι r 𝔼 N | D Btwn C r D r Cgr A B