Metamath Proof Explorer


Theorem funtransport

Description: The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion funtransport Fun TransportTo

Proof

Step Hyp Ref Expression
1 reeanv n m p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p m p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
2 simp1 p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q p 𝔼 n × 𝔼 n
3 simp1 p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q p 𝔼 m × 𝔼 m
4 2 3 anim12i p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q p 𝔼 n × 𝔼 n p 𝔼 m × 𝔼 m
5 4 anim1i p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p p 𝔼 n × 𝔼 n p 𝔼 m × 𝔼 m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
6 5 an4s p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p p 𝔼 n × 𝔼 n p 𝔼 m × 𝔼 m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
7 xp1st p 𝔼 n × 𝔼 n 1 st p 𝔼 n
8 xp1st p 𝔼 m × 𝔼 m 1 st p 𝔼 m
9 axdimuniq n 1 st p 𝔼 n m 1 st p 𝔼 m n = m
10 fveq2 n = m 𝔼 n = 𝔼 m
11 10 riotaeqdv n = m ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
12 11 eqeq2d n = m y = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
13 12 anbi2d n = m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
14 eqtr3 x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
15 13 14 syl6bir n = m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
16 9 15 syl n 1 st p 𝔼 n m 1 st p 𝔼 m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
17 16 an4s n m 1 st p 𝔼 n 1 st p 𝔼 m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
18 17 ex n m 1 st p 𝔼 n 1 st p 𝔼 m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
19 7 8 18 syl2ani n m p 𝔼 n × 𝔼 n p 𝔼 m × 𝔼 m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
20 19 impd n m p 𝔼 n × 𝔼 n p 𝔼 m × 𝔼 m x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
21 6 20 syl5 n m p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
22 21 rexlimivv n m p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
23 1 22 sylbir n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p m p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
24 23 gen2 x y n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p m p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
25 eqeq1 x = y x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p y = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
26 25 anbi2d x = y p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q y = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
27 26 rexbidv x = y n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q y = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
28 10 sqxpeqd n = m 𝔼 n × 𝔼 n = 𝔼 m × 𝔼 m
29 28 eleq2d n = m p 𝔼 n × 𝔼 n p 𝔼 m × 𝔼 m
30 28 eleq2d n = m q 𝔼 n × 𝔼 n q 𝔼 m × 𝔼 m
31 29 30 3anbi12d n = m p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q
32 31 12 anbi12d n = m p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q y = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
33 32 cbvrexvw n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q y = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p m p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
34 27 33 bitrdi x = y n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p m p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
35 34 mo4 * x n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x y n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p m p 𝔼 m × 𝔼 m q 𝔼 m × 𝔼 m 1 st q 2 nd q y = ι r 𝔼 m | 2 nd q Btwn 1 st q r 2 nd q r Cgr p x = y
36 24 35 mpbir * x n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
37 36 funoprab Fun p q x | n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
38 df-transport TransportTo = p q x | n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
39 38 funeqi Fun TransportTo Fun p q x | n p 𝔼 n × 𝔼 n q 𝔼 n × 𝔼 n 1 st q 2 nd q x = ι r 𝔼 n | 2 nd q Btwn 1 st q r 2 nd q r Cgr p
40 37 39 mpbir Fun TransportTo