Step |
Hyp |
Ref |
Expression |
1 |
|
reeanv |
|- ( E. n e. NN E. m e. NN ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) <-> ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) |
2 |
|
simp1 |
|- ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) -> p e. ( ( EE ` n ) X. ( EE ` n ) ) ) |
3 |
|
simp1 |
|- ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) -> p e. ( ( EE ` m ) X. ( EE ` m ) ) ) |
4 |
2 3
|
anim12i |
|- ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) ) -> ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) ) |
5 |
4
|
anim1i |
|- ( ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) ) /\ ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) /\ ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) |
6 |
5
|
an4s |
|- ( ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) /\ ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) |
7 |
|
xp1st |
|- ( p e. ( ( EE ` n ) X. ( EE ` n ) ) -> ( 1st ` p ) e. ( EE ` n ) ) |
8 |
|
xp1st |
|- ( p e. ( ( EE ` m ) X. ( EE ` m ) ) -> ( 1st ` p ) e. ( EE ` m ) ) |
9 |
|
axdimuniq |
|- ( ( ( n e. NN /\ ( 1st ` p ) e. ( EE ` n ) ) /\ ( m e. NN /\ ( 1st ` p ) e. ( EE ` m ) ) ) -> n = m ) |
10 |
|
fveq2 |
|- ( n = m -> ( EE ` n ) = ( EE ` m ) ) |
11 |
10
|
riotaeqdv |
|- ( n = m -> ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) |
12 |
11
|
eqeq2d |
|- ( n = m -> ( y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) <-> y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) |
13 |
12
|
anbi2d |
|- ( n = m -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) |
14 |
|
eqtr3 |
|- ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) |
15 |
13 14
|
syl6bir |
|- ( n = m -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) |
16 |
9 15
|
syl |
|- ( ( ( n e. NN /\ ( 1st ` p ) e. ( EE ` n ) ) /\ ( m e. NN /\ ( 1st ` p ) e. ( EE ` m ) ) ) -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) |
17 |
16
|
an4s |
|- ( ( ( n e. NN /\ m e. NN ) /\ ( ( 1st ` p ) e. ( EE ` n ) /\ ( 1st ` p ) e. ( EE ` m ) ) ) -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) |
18 |
17
|
ex |
|- ( ( n e. NN /\ m e. NN ) -> ( ( ( 1st ` p ) e. ( EE ` n ) /\ ( 1st ` p ) e. ( EE ` m ) ) -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) ) |
19 |
7 8 18
|
syl2ani |
|- ( ( n e. NN /\ m e. NN ) -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) ) |
20 |
19
|
impd |
|- ( ( n e. NN /\ m e. NN ) -> ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) /\ ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) ) |
21 |
6 20
|
syl5 |
|- ( ( n e. NN /\ m e. NN ) -> ( ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) ) |
22 |
21
|
rexlimivv |
|- ( E. n e. NN E. m e. NN ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) |
23 |
1 22
|
sylbir |
|- ( ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) |
24 |
23
|
gen2 |
|- A. x A. y ( ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) |
25 |
|
eqeq1 |
|- ( x = y -> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) <-> y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) |
26 |
25
|
anbi2d |
|- ( x = y -> ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) |
27 |
26
|
rexbidv |
|- ( x = y -> ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) |
28 |
10
|
sqxpeqd |
|- ( n = m -> ( ( EE ` n ) X. ( EE ` n ) ) = ( ( EE ` m ) X. ( EE ` m ) ) ) |
29 |
28
|
eleq2d |
|- ( n = m -> ( p e. ( ( EE ` n ) X. ( EE ` n ) ) <-> p e. ( ( EE ` m ) X. ( EE ` m ) ) ) ) |
30 |
28
|
eleq2d |
|- ( n = m -> ( q e. ( ( EE ` n ) X. ( EE ` n ) ) <-> q e. ( ( EE ` m ) X. ( EE ` m ) ) ) ) |
31 |
29 30
|
3anbi12d |
|- ( n = m -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) <-> ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) ) ) |
32 |
31 12
|
anbi12d |
|- ( n = m -> ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) |
33 |
32
|
cbvrexvw |
|- ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) |
34 |
27 33
|
bitrdi |
|- ( x = y -> ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) |
35 |
34
|
mo4 |
|- ( E* x E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> A. x A. y ( ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) ) |
36 |
24 35
|
mpbir |
|- E* x E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) |
37 |
36
|
funoprab |
|- Fun { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } |
38 |
|
df-transport |
|- TransportTo = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } |
39 |
38
|
funeqi |
|- ( Fun TransportTo <-> Fun { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } ) |
40 |
37 39
|
mpbir |
|- Fun TransportTo |