| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reeanv |  |-  ( E. n e. NN E. m e. NN ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) <-> ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) | 
						
							| 2 |  | simp1 |  |-  ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) -> p e. ( ( EE ` n ) X. ( EE ` n ) ) ) | 
						
							| 3 |  | simp1 |  |-  ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) -> p e. ( ( EE ` m ) X. ( EE ` m ) ) ) | 
						
							| 4 | 2 3 | anim12i |  |-  ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) ) -> ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) ) | 
						
							| 5 | 4 | anim1i |  |-  ( ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) ) /\ ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) /\ ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) | 
						
							| 6 | 5 | an4s |  |-  ( ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) /\ ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) | 
						
							| 7 |  | xp1st |  |-  ( p e. ( ( EE ` n ) X. ( EE ` n ) ) -> ( 1st ` p ) e. ( EE ` n ) ) | 
						
							| 8 |  | xp1st |  |-  ( p e. ( ( EE ` m ) X. ( EE ` m ) ) -> ( 1st ` p ) e. ( EE ` m ) ) | 
						
							| 9 |  | axdimuniq |  |-  ( ( ( n e. NN /\ ( 1st ` p ) e. ( EE ` n ) ) /\ ( m e. NN /\ ( 1st ` p ) e. ( EE ` m ) ) ) -> n = m ) | 
						
							| 10 |  | fveq2 |  |-  ( n = m -> ( EE ` n ) = ( EE ` m ) ) | 
						
							| 11 | 10 | riotaeqdv |  |-  ( n = m -> ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( n = m -> ( y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) <-> y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) | 
						
							| 13 | 12 | anbi2d |  |-  ( n = m -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) | 
						
							| 14 |  | eqtr3 |  |-  ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) | 
						
							| 15 | 13 14 | biimtrrdi |  |-  ( n = m -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) | 
						
							| 16 | 9 15 | syl |  |-  ( ( ( n e. NN /\ ( 1st ` p ) e. ( EE ` n ) ) /\ ( m e. NN /\ ( 1st ` p ) e. ( EE ` m ) ) ) -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) | 
						
							| 17 | 16 | an4s |  |-  ( ( ( n e. NN /\ m e. NN ) /\ ( ( 1st ` p ) e. ( EE ` n ) /\ ( 1st ` p ) e. ( EE ` m ) ) ) -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) | 
						
							| 18 | 17 | ex |  |-  ( ( n e. NN /\ m e. NN ) -> ( ( ( 1st ` p ) e. ( EE ` n ) /\ ( 1st ` p ) e. ( EE ` m ) ) -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) ) | 
						
							| 19 | 7 8 18 | syl2ani |  |-  ( ( n e. NN /\ m e. NN ) -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) -> ( ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) -> x = y ) ) ) | 
						
							| 20 | 19 | impd |  |-  ( ( n e. NN /\ m e. NN ) -> ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ p e. ( ( EE ` m ) X. ( EE ` m ) ) ) /\ ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) ) | 
						
							| 21 | 6 20 | syl5 |  |-  ( ( n e. NN /\ m e. NN ) -> ( ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) ) | 
						
							| 22 | 21 | rexlimivv |  |-  ( E. n e. NN E. m e. NN ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) | 
						
							| 23 | 1 22 | sylbir |  |-  ( ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) | 
						
							| 24 | 23 | gen2 |  |-  A. x A. y ( ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) | 
						
							| 25 |  | eqeq1 |  |-  ( x = y -> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) <-> y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) | 
						
							| 26 | 25 | anbi2d |  |-  ( x = y -> ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) | 
						
							| 27 | 26 | rexbidv |  |-  ( x = y -> ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) | 
						
							| 28 | 10 | sqxpeqd |  |-  ( n = m -> ( ( EE ` n ) X. ( EE ` n ) ) = ( ( EE ` m ) X. ( EE ` m ) ) ) | 
						
							| 29 | 28 | eleq2d |  |-  ( n = m -> ( p e. ( ( EE ` n ) X. ( EE ` n ) ) <-> p e. ( ( EE ` m ) X. ( EE ` m ) ) ) ) | 
						
							| 30 | 28 | eleq2d |  |-  ( n = m -> ( q e. ( ( EE ` n ) X. ( EE ` n ) ) <-> q e. ( ( EE ` m ) X. ( EE ` m ) ) ) ) | 
						
							| 31 | 29 30 | 3anbi12d |  |-  ( n = m -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) <-> ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) ) ) | 
						
							| 32 | 31 12 | anbi12d |  |-  ( n = m -> ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) | 
						
							| 33 | 32 | cbvrexvw |  |-  ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) | 
						
							| 34 | 27 33 | bitrdi |  |-  ( x = y -> ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) ) | 
						
							| 35 | 34 | mo4 |  |-  ( E* x E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> A. x A. y ( ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) /\ E. m e. NN ( ( p e. ( ( EE ` m ) X. ( EE ` m ) ) /\ q e. ( ( EE ` m ) X. ( EE ` m ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ y = ( iota_ r e. ( EE ` m ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) ) -> x = y ) ) | 
						
							| 36 | 24 35 | mpbir |  |-  E* x E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) | 
						
							| 37 | 36 | funoprab |  |-  Fun { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } | 
						
							| 38 |  | df-transport |  |-  TransportTo = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } | 
						
							| 39 | 38 | funeqi |  |-  ( Fun TransportTo <-> Fun { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } ) | 
						
							| 40 | 37 39 | mpbir |  |-  Fun TransportTo |