Metamath Proof Explorer


Theorem funtransport

Description: The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion funtransport Fun TransportTo

Proof

Step Hyp Ref Expression
1 reeanv ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ∧ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) ↔ ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) )
2 simp1 ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) → 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) )
3 simp1 ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) → 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) )
4 2 3 anim12i ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ) → ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ) )
5 4 anim1i ( ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ) ∧ ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) → ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ) ∧ ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) )
6 5 an4s ( ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ∧ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) → ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ) ∧ ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) )
7 xp1st ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) → ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑛 ) )
8 xp1st ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) → ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑚 ) )
9 axdimuniq ( ( ( 𝑛 ∈ ℕ ∧ ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑚 ∈ ℕ ∧ ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑚 ) ) ) → 𝑛 = 𝑚 )
10 fveq2 ( 𝑛 = 𝑚 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑚 ) )
11 10 riotaeqdv ( 𝑛 = 𝑚 → ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) )
12 11 eqeq2d ( 𝑛 = 𝑚 → ( 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ↔ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) )
13 12 anbi2d ( 𝑛 = 𝑚 → ( ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) )
14 eqtr3 ( ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) → 𝑥 = 𝑦 )
15 13 14 syl6bir ( 𝑛 = 𝑚 → ( ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) → 𝑥 = 𝑦 ) )
16 9 15 syl ( ( ( 𝑛 ∈ ℕ ∧ ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑚 ∈ ℕ ∧ ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑚 ) ) ) → ( ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) → 𝑥 = 𝑦 ) )
17 16 an4s ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑚 ) ) ) → ( ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) → 𝑥 = 𝑦 ) )
18 17 ex ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 1st𝑝 ) ∈ ( 𝔼 ‘ 𝑚 ) ) → ( ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) → 𝑥 = 𝑦 ) ) )
19 7 8 18 syl2ani ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ) → ( ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) → 𝑥 = 𝑦 ) ) )
20 19 impd ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ) ∧ ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) → 𝑥 = 𝑦 ) )
21 6 20 syl5 ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ∧ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) → 𝑥 = 𝑦 ) )
22 21 rexlimivv ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ∧ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) → 𝑥 = 𝑦 )
23 1 22 sylbir ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) → 𝑥 = 𝑦 )
24 23 gen2 𝑥𝑦 ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) → 𝑥 = 𝑦 )
25 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ↔ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) )
26 25 anbi2d ( 𝑥 = 𝑦 → ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) )
27 26 rexbidv ( 𝑥 = 𝑦 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) )
28 10 sqxpeqd ( 𝑛 = 𝑚 → ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) = ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) )
29 28 eleq2d ( 𝑛 = 𝑚 → ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ) )
30 28 eleq2d ( 𝑛 = 𝑚 → ( 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ↔ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ) )
31 29 30 3anbi12d ( 𝑛 = 𝑚 → ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ↔ ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ) )
32 31 12 anbi12d ( 𝑛 = 𝑚 → ( ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) )
33 32 cbvrexvw ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) )
34 27 33 bitrdi ( 𝑥 = 𝑦 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) )
35 34 mo4 ( ∃* 𝑥𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ↔ ∀ 𝑥𝑦 ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑚 ) × ( 𝔼 ‘ 𝑚 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑦 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑚 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) ) → 𝑥 = 𝑦 ) )
36 24 35 mpbir ∃* 𝑥𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) )
37 36 funoprab Fun { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) }
38 df-transport TransportTo = { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) }
39 38 funeqi ( Fun TransportTo ↔ Fun { ⟨ ⟨ 𝑝 , 𝑞 ⟩ , 𝑥 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ 𝑞 ∈ ( ( 𝔼 ‘ 𝑛 ) × ( 𝔼 ‘ 𝑛 ) ) ∧ ( 1st𝑞 ) ≠ ( 2nd𝑞 ) ) ∧ 𝑥 = ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 2nd𝑞 ) Btwn ⟨ ( 1st𝑞 ) , 𝑟 ⟩ ∧ ⟨ ( 2nd𝑞 ) , 𝑟 ⟩ Cgr 𝑝 ) ) ) } )
40 37 39 mpbir Fun TransportTo