| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ov |  |-  ( <. A , B >. TransportTo <. C , D >. ) = ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) | 
						
							| 2 |  | opelxpi |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) | 
						
							| 4 |  | opelxpi |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) | 
						
							| 6 |  | simp3 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> C =/= D ) | 
						
							| 7 |  | op1stg |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( 1st ` <. C , D >. ) = C ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( 1st ` <. C , D >. ) = C ) | 
						
							| 9 |  | op2ndg |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( 2nd ` <. C , D >. ) = D ) | 
						
							| 10 | 9 | 3ad2ant2 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( 2nd ` <. C , D >. ) = D ) | 
						
							| 11 | 6 8 10 | 3netr4d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) | 
						
							| 12 | 3 5 11 | 3jca |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) ) | 
						
							| 13 | 8 | opeq1d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> <. ( 1st ` <. C , D >. ) , r >. = <. C , r >. ) | 
						
							| 14 | 10 13 | breq12d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. <-> D Btwn <. C , r >. ) ) | 
						
							| 15 | 10 | opeq1d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> <. ( 2nd ` <. C , D >. ) , r >. = <. D , r >. ) | 
						
							| 16 | 15 | breq1d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. <-> <. D , r >. Cgr <. A , B >. ) ) | 
						
							| 17 | 14 16 | anbi12d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) <-> ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) | 
						
							| 18 | 17 | riotabidv |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) | 
						
							| 20 | 12 19 | jca |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 21 |  | fveq2 |  |-  ( n = N -> ( EE ` n ) = ( EE ` N ) ) | 
						
							| 22 | 21 | sqxpeqd |  |-  ( n = N -> ( ( EE ` n ) X. ( EE ` n ) ) = ( ( EE ` N ) X. ( EE ` N ) ) ) | 
						
							| 23 | 22 | eleq2d |  |-  ( n = N -> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) | 
						
							| 24 | 22 | eleq2d |  |-  ( n = N -> ( <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) | 
						
							| 25 | 23 24 | 3anbi12d |  |-  ( n = N -> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) <-> ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) ) ) | 
						
							| 26 | 21 | riotaeqdv |  |-  ( n = N -> ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( n = N -> ( ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) <-> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 28 | 25 27 | anbi12d |  |-  ( n = N -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) <-> ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) | 
						
							| 29 | 28 | rspcev |  |-  ( ( N e. NN /\ ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) -> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 30 | 20 29 | sylan2 |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 31 |  | df-br |  |-  ( <. <. A , B >. , <. C , D >. >. TransportTo ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) <-> <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. TransportTo ) | 
						
							| 32 |  | df-transport |  |-  TransportTo = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } | 
						
							| 33 | 32 | eleq2i |  |-  ( <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. TransportTo <-> <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } ) | 
						
							| 34 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 35 |  | opex |  |-  <. C , D >. e. _V | 
						
							| 36 |  | riotaex |  |-  ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) e. _V | 
						
							| 37 |  | eleq1 |  |-  ( p = <. A , B >. -> ( p e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) | 
						
							| 38 | 37 | 3anbi1d |  |-  ( p = <. A , B >. -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) <-> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) ) ) | 
						
							| 39 |  | breq2 |  |-  ( p = <. A , B >. -> ( <. ( 2nd ` q ) , r >. Cgr p <-> <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) | 
						
							| 40 | 39 | anbi2d |  |-  ( p = <. A , B >. -> ( ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) <-> ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) | 
						
							| 41 | 40 | riotabidv |  |-  ( p = <. A , B >. -> ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) | 
						
							| 42 | 41 | eqeq2d |  |-  ( p = <. A , B >. -> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) <-> x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 43 | 38 42 | anbi12d |  |-  ( p = <. A , B >. -> ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) ) ) | 
						
							| 44 | 43 | rexbidv |  |-  ( p = <. A , B >. -> ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) ) ) | 
						
							| 45 |  | eleq1 |  |-  ( q = <. C , D >. -> ( q e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) | 
						
							| 46 |  | fveq2 |  |-  ( q = <. C , D >. -> ( 1st ` q ) = ( 1st ` <. C , D >. ) ) | 
						
							| 47 |  | fveq2 |  |-  ( q = <. C , D >. -> ( 2nd ` q ) = ( 2nd ` <. C , D >. ) ) | 
						
							| 48 | 46 47 | neeq12d |  |-  ( q = <. C , D >. -> ( ( 1st ` q ) =/= ( 2nd ` q ) <-> ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) ) | 
						
							| 49 | 45 48 | 3anbi23d |  |-  ( q = <. C , D >. -> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) <-> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) ) ) | 
						
							| 50 | 46 | opeq1d |  |-  ( q = <. C , D >. -> <. ( 1st ` q ) , r >. = <. ( 1st ` <. C , D >. ) , r >. ) | 
						
							| 51 | 47 50 | breq12d |  |-  ( q = <. C , D >. -> ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. <-> ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. ) ) | 
						
							| 52 | 47 | opeq1d |  |-  ( q = <. C , D >. -> <. ( 2nd ` q ) , r >. = <. ( 2nd ` <. C , D >. ) , r >. ) | 
						
							| 53 | 52 | breq1d |  |-  ( q = <. C , D >. -> ( <. ( 2nd ` q ) , r >. Cgr <. A , B >. <-> <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) | 
						
							| 54 | 51 53 | anbi12d |  |-  ( q = <. C , D >. -> ( ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) <-> ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) | 
						
							| 55 | 54 | riotabidv |  |-  ( q = <. C , D >. -> ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) | 
						
							| 56 | 55 | eqeq2d |  |-  ( q = <. C , D >. -> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) <-> x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 57 | 49 56 | anbi12d |  |-  ( q = <. C , D >. -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) <-> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) | 
						
							| 58 | 57 | rexbidv |  |-  ( q = <. C , D >. -> ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) | 
						
							| 59 |  | eqeq1 |  |-  ( x = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) <-> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 60 | 59 | anbi2d |  |-  ( x = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) <-> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) | 
						
							| 61 | 60 | rexbidv |  |-  ( x = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) | 
						
							| 62 | 44 58 61 | eloprabg |  |-  ( ( <. A , B >. e. _V /\ <. C , D >. e. _V /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) e. _V ) -> ( <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) | 
						
							| 63 | 34 35 36 62 | mp3an |  |-  ( <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 64 | 31 33 63 | 3bitri |  |-  ( <. <. A , B >. , <. C , D >. >. TransportTo ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 65 |  | funtransport |  |-  Fun TransportTo | 
						
							| 66 |  | funbrfv |  |-  ( Fun TransportTo -> ( <. <. A , B >. , <. C , D >. >. TransportTo ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) ) | 
						
							| 67 | 65 66 | ax-mp |  |-  ( <. <. A , B >. , <. C , D >. >. TransportTo ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) | 
						
							| 68 | 64 67 | sylbir |  |-  ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) -> ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) | 
						
							| 69 | 30 68 | syl |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) | 
						
							| 70 | 1 69 | eqtrid |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( <. A , B >. TransportTo <. C , D >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) |