Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
|- ( <. A , B >. TransportTo <. C , D >. ) = ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) |
2 |
|
opelxpi |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) |
3 |
2
|
3ad2ant1 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) |
4 |
|
opelxpi |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) |
5 |
4
|
3ad2ant2 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) |
6 |
|
simp3 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> C =/= D ) |
7 |
|
op1stg |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( 1st ` <. C , D >. ) = C ) |
8 |
7
|
3ad2ant2 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( 1st ` <. C , D >. ) = C ) |
9 |
|
op2ndg |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( 2nd ` <. C , D >. ) = D ) |
10 |
9
|
3ad2ant2 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( 2nd ` <. C , D >. ) = D ) |
11 |
6 8 10
|
3netr4d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) |
12 |
3 5 11
|
3jca |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) ) |
13 |
8
|
opeq1d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> <. ( 1st ` <. C , D >. ) , r >. = <. C , r >. ) |
14 |
10 13
|
breq12d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. <-> D Btwn <. C , r >. ) ) |
15 |
10
|
opeq1d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> <. ( 2nd ` <. C , D >. ) , r >. = <. D , r >. ) |
16 |
15
|
breq1d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. <-> <. D , r >. Cgr <. A , B >. ) ) |
17 |
14 16
|
anbi12d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) <-> ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) |
18 |
17
|
riotabidv |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) |
19 |
18
|
eqcomd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) |
20 |
12 19
|
jca |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) -> ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) |
21 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
22 |
21
|
sqxpeqd |
|- ( n = N -> ( ( EE ` n ) X. ( EE ` n ) ) = ( ( EE ` N ) X. ( EE ` N ) ) ) |
23 |
22
|
eleq2d |
|- ( n = N -> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) |
24 |
22
|
eleq2d |
|- ( n = N -> ( <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) |
25 |
23 24
|
3anbi12d |
|- ( n = N -> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) <-> ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) ) ) |
26 |
21
|
riotaeqdv |
|- ( n = N -> ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) |
27 |
26
|
eqeq2d |
|- ( n = N -> ( ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) <-> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) |
28 |
25 27
|
anbi12d |
|- ( n = N -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) <-> ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) |
29 |
28
|
rspcev |
|- ( ( N e. NN /\ ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` N ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) -> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) |
30 |
20 29
|
sylan2 |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) |
31 |
|
df-br |
|- ( <. <. A , B >. , <. C , D >. >. TransportTo ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) <-> <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. TransportTo ) |
32 |
|
df-transport |
|- TransportTo = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } |
33 |
32
|
eleq2i |
|- ( <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. TransportTo <-> <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } ) |
34 |
|
opex |
|- <. A , B >. e. _V |
35 |
|
opex |
|- <. C , D >. e. _V |
36 |
|
riotaex |
|- ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) e. _V |
37 |
|
eleq1 |
|- ( p = <. A , B >. -> ( p e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) |
38 |
37
|
3anbi1d |
|- ( p = <. A , B >. -> ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) <-> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) ) ) |
39 |
|
breq2 |
|- ( p = <. A , B >. -> ( <. ( 2nd ` q ) , r >. Cgr p <-> <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) |
40 |
39
|
anbi2d |
|- ( p = <. A , B >. -> ( ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) <-> ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) |
41 |
40
|
riotabidv |
|- ( p = <. A , B >. -> ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) |
42 |
41
|
eqeq2d |
|- ( p = <. A , B >. -> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) <-> x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) ) |
43 |
38 42
|
anbi12d |
|- ( p = <. A , B >. -> ( ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) ) ) |
44 |
43
|
rexbidv |
|- ( p = <. A , B >. -> ( E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) ) ) |
45 |
|
eleq1 |
|- ( q = <. C , D >. -> ( q e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) |
46 |
|
fveq2 |
|- ( q = <. C , D >. -> ( 1st ` q ) = ( 1st ` <. C , D >. ) ) |
47 |
|
fveq2 |
|- ( q = <. C , D >. -> ( 2nd ` q ) = ( 2nd ` <. C , D >. ) ) |
48 |
46 47
|
neeq12d |
|- ( q = <. C , D >. -> ( ( 1st ` q ) =/= ( 2nd ` q ) <-> ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) ) |
49 |
45 48
|
3anbi23d |
|- ( q = <. C , D >. -> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) <-> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) ) ) |
50 |
46
|
opeq1d |
|- ( q = <. C , D >. -> <. ( 1st ` q ) , r >. = <. ( 1st ` <. C , D >. ) , r >. ) |
51 |
47 50
|
breq12d |
|- ( q = <. C , D >. -> ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. <-> ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. ) ) |
52 |
47
|
opeq1d |
|- ( q = <. C , D >. -> <. ( 2nd ` q ) , r >. = <. ( 2nd ` <. C , D >. ) , r >. ) |
53 |
52
|
breq1d |
|- ( q = <. C , D >. -> ( <. ( 2nd ` q ) , r >. Cgr <. A , B >. <-> <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) |
54 |
51 53
|
anbi12d |
|- ( q = <. C , D >. -> ( ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) <-> ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) |
55 |
54
|
riotabidv |
|- ( q = <. C , D >. -> ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) |
56 |
55
|
eqeq2d |
|- ( q = <. C , D >. -> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) <-> x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) |
57 |
49 56
|
anbi12d |
|- ( q = <. C , D >. -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) <-> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) |
58 |
57
|
rexbidv |
|- ( q = <. C , D >. -> ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr <. A , B >. ) ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) |
59 |
|
eqeq1 |
|- ( x = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) <-> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) |
60 |
59
|
anbi2d |
|- ( x = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) <-> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) |
61 |
60
|
rexbidv |
|- ( x = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) |
62 |
44 58 61
|
eloprabg |
|- ( ( <. A , B >. e. _V /\ <. C , D >. e. _V /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) e. _V ) -> ( <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) ) |
63 |
34 35 36 62
|
mp3an |
|- ( <. <. <. A , B >. , <. C , D >. >. , ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) >. e. { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( ( EE ` n ) X. ( EE ` n ) ) /\ q e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` q ) =/= ( 2nd ` q ) ) /\ x = ( iota_ r e. ( EE ` n ) ( ( 2nd ` q ) Btwn <. ( 1st ` q ) , r >. /\ <. ( 2nd ` q ) , r >. Cgr p ) ) ) } <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) |
64 |
31 33 63
|
3bitri |
|- ( <. <. A , B >. , <. C , D >. >. TransportTo ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) ) |
65 |
|
funtransport |
|- Fun TransportTo |
66 |
|
funbrfv |
|- ( Fun TransportTo -> ( <. <. A , B >. , <. C , D >. >. TransportTo ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) ) |
67 |
65 66
|
ax-mp |
|- ( <. <. A , B >. , <. C , D >. >. TransportTo ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) |
68 |
64 67
|
sylbir |
|- ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ ( 1st ` <. C , D >. ) =/= ( 2nd ` <. C , D >. ) ) /\ ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( iota_ r e. ( EE ` n ) ( ( 2nd ` <. C , D >. ) Btwn <. ( 1st ` <. C , D >. ) , r >. /\ <. ( 2nd ` <. C , D >. ) , r >. Cgr <. A , B >. ) ) ) -> ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) |
69 |
30 68
|
syl |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( TransportTo ` <. <. A , B >. , <. C , D >. >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) |
70 |
1 69
|
syl5eq |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( <. A , B >. TransportTo <. C , D >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) |