| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvtransport |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( <. A , B >. TransportTo <. C , D >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) | 
						
							| 2 |  | segconeu |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> E! r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) | 
						
							| 3 |  | riotacl |  |-  ( E! r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) -> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) e. ( EE ` N ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) e. ( EE ` N ) ) | 
						
							| 5 | 1 4 | eqeltrd |  |-  ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( <. A , B >. TransportTo <. C , D >. ) e. ( EE ` N ) ) |