Metamath Proof Explorer


Theorem transportcl

Description: Closure law for segment transport. (Contributed by Scott Fenton, 19-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion transportcl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B TransportTo C D 𝔼 N

Proof

Step Hyp Ref Expression
1 fvtransport N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B TransportTo C D = ι r 𝔼 N | D Btwn C r D r Cgr A B
2 segconeu N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D ∃! r 𝔼 N D Btwn C r D r Cgr A B
3 riotacl ∃! r 𝔼 N D Btwn C r D r Cgr A B ι r 𝔼 N | D Btwn C r D r Cgr A B 𝔼 N
4 2 3 syl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D ι r 𝔼 N | D Btwn C r D r Cgr A B 𝔼 N
5 1 4 eqeltrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B TransportTo C D 𝔼 N