Step |
Hyp |
Ref |
Expression |
1 |
|
fvtransport |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 〈 𝐴 , 𝐵 〉 TransportTo 〈 𝐶 , 𝐷 〉 ) = ( ℩ 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn 〈 𝐶 , 𝑟 〉 ∧ 〈 𝐷 , 𝑟 〉 Cgr 〈 𝐴 , 𝐵 〉 ) ) ) |
2 |
|
segconeu |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶 ≠ 𝐷 ) ) → ∃! 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn 〈 𝐶 , 𝑟 〉 ∧ 〈 𝐷 , 𝑟 〉 Cgr 〈 𝐴 , 𝐵 〉 ) ) |
3 |
|
riotacl |
⊢ ( ∃! 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn 〈 𝐶 , 𝑟 〉 ∧ 〈 𝐷 , 𝑟 〉 Cgr 〈 𝐴 , 𝐵 〉 ) → ( ℩ 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn 〈 𝐶 , 𝑟 〉 ∧ 〈 𝐷 , 𝑟 〉 Cgr 〈 𝐴 , 𝐵 〉 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ℩ 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn 〈 𝐶 , 𝑟 〉 ∧ 〈 𝐷 , 𝑟 〉 Cgr 〈 𝐴 , 𝐵 〉 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
1 4
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 〈 𝐴 , 𝐵 〉 TransportTo 〈 𝐶 , 𝐷 〉 ) ∈ ( 𝔼 ‘ 𝑁 ) ) |