Metamath Proof Explorer


Theorem transportcl

Description: Closure law for segment transport. (Contributed by Scott Fenton, 19-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion transportcl ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ∈ ( 𝔼 ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 fvtransport ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
2 segconeu ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ∃! 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
3 riotacl ( ∃! 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) → ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ∈ ( 𝔼 ‘ 𝑁 ) )
4 2 3 syl ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ∈ ( 𝔼 ‘ 𝑁 ) )
5 1 4 eqeltrd ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ∈ ( 𝔼 ‘ 𝑁 ) )