Metamath Proof Explorer


Theorem transportprops

Description: Calculate the defining properties of the transport function. (Contributed by Scott Fenton, 19-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion transportprops ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( 𝐷 Btwn ⟨ 𝐶 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ ∧ ⟨ 𝐷 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )

Proof

Step Hyp Ref Expression
1 fvtransport ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) = ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
2 1 eqcomd ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) )
3 transportcl ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ∈ ( 𝔼 ‘ 𝑁 ) )
4 segconeu ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ∃! 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
5 opeq2 ( 𝑟 = ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) → ⟨ 𝐶 , 𝑟 ⟩ = ⟨ 𝐶 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ )
6 5 breq2d ( 𝑟 = ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) → ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ↔ 𝐷 Btwn ⟨ 𝐶 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ ) )
7 opeq2 ( 𝑟 = ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) → ⟨ 𝐷 , 𝑟 ⟩ = ⟨ 𝐷 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ )
8 7 breq1d ( 𝑟 = ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) → ( ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ↔ ⟨ 𝐷 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
9 6 8 anbi12d ( 𝑟 = ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) → ( ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ( 𝐷 Btwn ⟨ 𝐶 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ ∧ ⟨ 𝐷 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
10 9 riota2 ( ( ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ∃! 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( ( 𝐷 Btwn ⟨ 𝐶 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ ∧ ⟨ 𝐷 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ) )
11 3 4 10 syl2anc ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( ( 𝐷 Btwn ⟨ 𝐶 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ ∧ ⟨ 𝐷 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ( 𝑟 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐷 Btwn ⟨ 𝐶 , 𝑟 ⟩ ∧ ⟨ 𝐷 , 𝑟 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ) )
12 2 11 mpbird ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐶𝐷 ) ) → ( 𝐷 Btwn ⟨ 𝐶 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ ∧ ⟨ 𝐷 , ( ⟨ 𝐴 , 𝐵 ⟩ TransportTo ⟨ 𝐶 , 𝐷 ⟩ ) ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )