Step |
Hyp |
Ref |
Expression |
1 |
|
fvtransport |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( <. A , B >. TransportTo <. C , D >. ) = ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) ) |
2 |
1
|
eqcomd |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( <. A , B >. TransportTo <. C , D >. ) ) |
3 |
|
transportcl |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( <. A , B >. TransportTo <. C , D >. ) e. ( EE ` N ) ) |
4 |
|
segconeu |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> E! r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) |
5 |
|
opeq2 |
|- ( r = ( <. A , B >. TransportTo <. C , D >. ) -> <. C , r >. = <. C , ( <. A , B >. TransportTo <. C , D >. ) >. ) |
6 |
5
|
breq2d |
|- ( r = ( <. A , B >. TransportTo <. C , D >. ) -> ( D Btwn <. C , r >. <-> D Btwn <. C , ( <. A , B >. TransportTo <. C , D >. ) >. ) ) |
7 |
|
opeq2 |
|- ( r = ( <. A , B >. TransportTo <. C , D >. ) -> <. D , r >. = <. D , ( <. A , B >. TransportTo <. C , D >. ) >. ) |
8 |
7
|
breq1d |
|- ( r = ( <. A , B >. TransportTo <. C , D >. ) -> ( <. D , r >. Cgr <. A , B >. <-> <. D , ( <. A , B >. TransportTo <. C , D >. ) >. Cgr <. A , B >. ) ) |
9 |
6 8
|
anbi12d |
|- ( r = ( <. A , B >. TransportTo <. C , D >. ) -> ( ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) <-> ( D Btwn <. C , ( <. A , B >. TransportTo <. C , D >. ) >. /\ <. D , ( <. A , B >. TransportTo <. C , D >. ) >. Cgr <. A , B >. ) ) ) |
10 |
9
|
riota2 |
|- ( ( ( <. A , B >. TransportTo <. C , D >. ) e. ( EE ` N ) /\ E! r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) -> ( ( D Btwn <. C , ( <. A , B >. TransportTo <. C , D >. ) >. /\ <. D , ( <. A , B >. TransportTo <. C , D >. ) >. Cgr <. A , B >. ) <-> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( <. A , B >. TransportTo <. C , D >. ) ) ) |
11 |
3 4 10
|
syl2anc |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( ( D Btwn <. C , ( <. A , B >. TransportTo <. C , D >. ) >. /\ <. D , ( <. A , B >. TransportTo <. C , D >. ) >. Cgr <. A , B >. ) <-> ( iota_ r e. ( EE ` N ) ( D Btwn <. C , r >. /\ <. D , r >. Cgr <. A , B >. ) ) = ( <. A , B >. TransportTo <. C , D >. ) ) ) |
12 |
2 11
|
mpbird |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ C =/= D ) ) -> ( D Btwn <. C , ( <. A , B >. TransportTo <. C , D >. ) >. /\ <. D , ( <. A , B >. TransportTo <. C , D >. ) >. Cgr <. A , B >. ) ) |