Description: Define the set of ultrafilters on a set. An ultrafilter is a filter that gives a definite result for every subset. (Contributed by Jeff Hankins, 30-Nov-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ufil | |- UFil = ( g e. _V |-> { f e. ( Fil ` g ) | A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cufil | |- UFil |
|
1 | vg | |- g |
|
2 | cvv | |- _V |
|
3 | vf | |- f |
|
4 | cfil | |- Fil |
|
5 | 1 | cv | |- g |
6 | 5 4 | cfv | |- ( Fil ` g ) |
7 | vx | |- x |
|
8 | 5 | cpw | |- ~P g |
9 | 7 | cv | |- x |
10 | 3 | cv | |- f |
11 | 9 10 | wcel | |- x e. f |
12 | 5 9 | cdif | |- ( g \ x ) |
13 | 12 10 | wcel | |- ( g \ x ) e. f |
14 | 11 13 | wo | |- ( x e. f \/ ( g \ x ) e. f ) |
15 | 14 7 8 | wral | |- A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) |
16 | 15 3 6 | crab | |- { f e. ( Fil ` g ) | A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) } |
17 | 1 2 16 | cmpt | |- ( g e. _V |-> { f e. ( Fil ` g ) | A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) } ) |
18 | 0 17 | wceq | |- UFil = ( g e. _V |-> { f e. ( Fil ` g ) | A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) } ) |