Metamath Proof Explorer


Definition df-ufil

Description: Define the set of ultrafilters on a set. An ultrafilter is a filter that gives a definite result for every subset. (Contributed by Jeff Hankins, 30-Nov-2009)

Ref Expression
Assertion df-ufil
|- UFil = ( g e. _V |-> { f e. ( Fil ` g ) | A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cufil
 |-  UFil
1 vg
 |-  g
2 cvv
 |-  _V
3 vf
 |-  f
4 cfil
 |-  Fil
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Fil ` g )
7 vx
 |-  x
8 5 cpw
 |-  ~P g
9 7 cv
 |-  x
10 3 cv
 |-  f
11 9 10 wcel
 |-  x e. f
12 5 9 cdif
 |-  ( g \ x )
13 12 10 wcel
 |-  ( g \ x ) e. f
14 11 13 wo
 |-  ( x e. f \/ ( g \ x ) e. f )
15 14 7 8 wral
 |-  A. x e. ~P g ( x e. f \/ ( g \ x ) e. f )
16 15 3 6 crab
 |-  { f e. ( Fil ` g ) | A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) }
17 1 2 16 cmpt
 |-  ( g e. _V |-> { f e. ( Fil ` g ) | A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) } )
18 0 17 wceq
 |-  UFil = ( g e. _V |-> { f e. ( Fil ` g ) | A. x e. ~P g ( x e. f \/ ( g \ x ) e. f ) } )