Metamath Proof Explorer


Theorem df3an2

Description: Express triple-and in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 25-Jul-2020)

Ref Expression
Assertion df3an2
|- ( ( ph /\ ps /\ ch ) <-> -. ( ph -> ( ps -> -. ch ) ) )

Proof

Step Hyp Ref Expression
1 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
2 df-an
 |-  ( ( ( ph /\ ps ) /\ ch ) <-> -. ( ( ph /\ ps ) -> -. ch ) )
3 impexp
 |-  ( ( ( ph /\ ps ) -> -. ch ) <-> ( ph -> ( ps -> -. ch ) ) )
4 2 3 xchbinx
 |-  ( ( ( ph /\ ps ) /\ ch ) <-> -. ( ph -> ( ps -> -. ch ) ) )
5 1 4 bitri
 |-  ( ( ph /\ ps /\ ch ) <-> -. ( ph -> ( ps -> -. ch ) ) )