Description: Express triple-and in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 25-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df3an2 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
2 | df-an | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ¬ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝜒 ) ) | |
3 | impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) | |
4 | 2 3 | xchbinx | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
5 | 1 4 | bitri | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |