Metamath Proof Explorer


Theorem df3an2

Description: Express triple-and in terms of implication and negation. Statement in Frege1879 p. 12. (Contributed by RP, 25-Jul-2020)

Ref Expression
Assertion df3an2 ( ( 𝜑𝜓𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
2 df-an ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ¬ ( ( 𝜑𝜓 ) → ¬ 𝜒 ) )
3 impexp ( ( ( 𝜑𝜓 ) → ¬ 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )
4 2 3 xchbinx ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )
5 1 4 bitri ( ( 𝜑𝜓𝜒 ) ↔ ¬ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )