Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter I
nev
Next ⟩
0pssin
Metamath Proof Explorer
Ascii
Structured
Theorem
nev
Description:
Express that not every set is in a class.
(Contributed by
RP
, 16-Apr-2020)
Ref
Expression
Assertion
nev
⊢
(
𝐴
≠ V ↔ ¬ ∀
𝑥
𝑥
∈
𝐴
)
Proof
Step
Hyp
Ref
Expression
1
eqv
⊢
(
𝐴
= V ↔ ∀
𝑥
𝑥
∈
𝐴
)
2
1
necon3abii
⊢
(
𝐴
≠ V ↔ ¬ ∀
𝑥
𝑥
∈
𝐴
)