| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 2 |
|
eqidd |
|- ( T. -> <. ( Base ` ndx ) , CC >. = <. ( Base ` ndx ) , CC >. ) |
| 3 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
| 4 |
|
ffn |
|- ( + : ( CC X. CC ) --> CC -> + Fn ( CC X. CC ) ) |
| 5 |
3 4
|
ax-mp |
|- + Fn ( CC X. CC ) |
| 6 |
|
fnov |
|- ( + Fn ( CC X. CC ) <-> + = ( u e. CC , v e. CC |-> ( u + v ) ) ) |
| 7 |
5 6
|
mpbi |
|- + = ( u e. CC , v e. CC |-> ( u + v ) ) |
| 8 |
|
eqcom |
|- ( + = ( u e. CC , v e. CC |-> ( u + v ) ) <-> ( u e. CC , v e. CC |-> ( u + v ) ) = + ) |
| 9 |
7 8
|
mpbi |
|- ( u e. CC , v e. CC |-> ( u + v ) ) = + |
| 10 |
9
|
opeq2i |
|- <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. = <. ( +g ` ndx ) , + >. |
| 11 |
10
|
a1i |
|- ( T. -> <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. = <. ( +g ` ndx ) , + >. ) |
| 12 |
|
ax-mulf |
|- x. : ( CC X. CC ) --> CC |
| 13 |
|
ffn |
|- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
| 14 |
12 13
|
ax-mp |
|- x. Fn ( CC X. CC ) |
| 15 |
|
fnov |
|- ( x. Fn ( CC X. CC ) <-> x. = ( u e. CC , v e. CC |-> ( u x. v ) ) ) |
| 16 |
14 15
|
mpbi |
|- x. = ( u e. CC , v e. CC |-> ( u x. v ) ) |
| 17 |
|
eqcom |
|- ( x. = ( u e. CC , v e. CC |-> ( u x. v ) ) <-> ( u e. CC , v e. CC |-> ( u x. v ) ) = x. ) |
| 18 |
16 17
|
mpbi |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) = x. |
| 19 |
18
|
opeq2i |
|- <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. = <. ( .r ` ndx ) , x. >. |
| 20 |
19
|
a1i |
|- ( T. -> <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. = <. ( .r ` ndx ) , x. >. ) |
| 21 |
2 11 20
|
tpeq123d |
|- ( T. -> { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } ) |
| 22 |
21
|
mptru |
|- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
| 23 |
22
|
uneq1i |
|- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
| 24 |
23
|
uneq1i |
|- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 25 |
1 24
|
eqtri |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |