| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfdec100.a |  |-  A e. NN0 | 
						
							| 2 |  | dfdec100.b |  |-  B e. NN0 | 
						
							| 3 |  | dfdec100.c |  |-  C e. RR | 
						
							| 4 |  | dfdec10 |  |-  ; B C = ( ( ; 1 0 x. B ) + C ) | 
						
							| 5 | 4 | oveq2i |  |-  ( ( ; ; 1 0 0 x. A ) + ; B C ) = ( ( ; ; 1 0 0 x. A ) + ( ( ; 1 0 x. B ) + C ) ) | 
						
							| 6 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 7 | 6 | dec0u |  |-  ( ; 1 0 x. ; 1 0 ) = ; ; 1 0 0 | 
						
							| 8 | 6 | nn0cni |  |-  ; 1 0 e. CC | 
						
							| 9 | 8 8 | mulcli |  |-  ( ; 1 0 x. ; 1 0 ) e. CC | 
						
							| 10 | 7 9 | eqeltrri |  |-  ; ; 1 0 0 e. CC | 
						
							| 11 | 1 | nn0cni |  |-  A e. CC | 
						
							| 12 | 10 11 | mulcli |  |-  ( ; ; 1 0 0 x. A ) e. CC | 
						
							| 13 | 2 | nn0cni |  |-  B e. CC | 
						
							| 14 | 8 13 | mulcli |  |-  ( ; 1 0 x. B ) e. CC | 
						
							| 15 | 3 | recni |  |-  C e. CC | 
						
							| 16 | 12 14 15 | addassi |  |-  ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) = ( ( ; ; 1 0 0 x. A ) + ( ( ; 1 0 x. B ) + C ) ) | 
						
							| 17 |  | dfdec10 |  |-  ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) | 
						
							| 18 |  | dfdec10 |  |-  ; A B = ( ( ; 1 0 x. A ) + B ) | 
						
							| 19 | 18 | oveq2i |  |-  ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) | 
						
							| 20 | 8 11 | mulcli |  |-  ( ; 1 0 x. A ) e. CC | 
						
							| 21 | 8 20 13 | adddii |  |-  ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) | 
						
							| 22 | 8 8 11 | mulassi |  |-  ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; 1 0 x. ( ; 1 0 x. A ) ) | 
						
							| 23 | 7 | oveq1i |  |-  ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; ; 1 0 0 x. A ) | 
						
							| 24 | 22 23 | eqtr3i |  |-  ( ; 1 0 x. ( ; 1 0 x. A ) ) = ( ; ; 1 0 0 x. A ) | 
						
							| 25 | 24 | oveq1i |  |-  ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) = ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) | 
						
							| 26 | 19 21 25 | 3eqtri |  |-  ( ; 1 0 x. ; A B ) = ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) | 
						
							| 27 | 26 | oveq1i |  |-  ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) | 
						
							| 28 | 17 27 | eqtr2i |  |-  ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) = ; ; A B C | 
						
							| 29 | 5 16 28 | 3eqtr2ri |  |-  ; ; A B C = ( ( ; ; 1 0 0 x. A ) + ; B C ) |