Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - add the Axiom of Power Sets  
				Founded and well-ordering relations  
				dffr2ALT  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Alternate proof of dffr2  , which avoids ax-8  but requires ax-10  ,
       ax-11  , ax-12  .  (Contributed by NM , 17-Feb-2004)   (Proof shortened by Andrew Salmon , 27-Aug-2011)   (Proof shortened by Mario Carneiro , 23-Jun-2015)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
				
					 
					Assertion 
					dffr2ALT  
					|- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							df-fr  
							 |-  ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) )  
						 
						
							2  
							
								
							 
							rabeq0  
							 |-  ( { z e. x | z R y } = (/) <-> A. z e. x -. z R y )  
						 
						
							3  
							
								2 
							 
							rexbii  
							 |-  ( E. y e. x { z e. x | z R y } = (/) <-> E. y e. x A. z e. x -. z R y )  
						 
						
							4  
							
								3 
							 
							imbi2i  
							 |-  ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) )  
						 
						
							5  
							
								4 
							 
							albii  
							 |-  ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) )  
						 
						
							6  
							
								1  5 
							 
							bitr4i  
							 |-  ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) )