Metamath Proof Explorer


Theorem dffr2ALT

Description: Alternate proof of dffr2 , which avoids ax-8 but requires ax-10 , ax-11 , ax-12 . (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dffr2ALT RFrAxxAxyxzx|zRy=

Proof

Step Hyp Ref Expression
1 df-fr RFrAxxAxyxzx¬zRy
2 rabeq0 zx|zRy=zx¬zRy
3 2 rexbii yxzx|zRy=yxzx¬zRy
4 3 imbi2i xAxyxzx|zRy=xAxyxzx¬zRy
5 4 albii xxAxyxzx|zRy=xxAxyxzx¬zRy
6 1 5 bitr4i RFrAxxAxyxzx|zRy=