| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffun3f.1 |  |-  F/_ x A | 
						
							| 2 |  | dffun3f.2 |  |-  F/_ y A | 
						
							| 3 |  | dffun3f.3 |  |-  F/_ z A | 
						
							| 4 | 1 2 | dffun6f |  |-  ( Fun A <-> ( Rel A /\ A. x E* y x A y ) ) | 
						
							| 5 |  | nfcv |  |-  F/_ z x | 
						
							| 6 |  | nfcv |  |-  F/_ z y | 
						
							| 7 | 5 3 6 | nfbr |  |-  F/ z x A y | 
						
							| 8 | 7 | mof |  |-  ( E* y x A y <-> E. z A. y ( x A y -> y = z ) ) | 
						
							| 9 | 8 | albii |  |-  ( A. x E* y x A y <-> A. x E. z A. y ( x A y -> y = z ) ) | 
						
							| 10 | 9 | anbi2i |  |-  ( ( Rel A /\ A. x E* y x A y ) <-> ( Rel A /\ A. x E. z A. y ( x A y -> y = z ) ) ) | 
						
							| 11 | 4 10 | bitri |  |-  ( Fun A <-> ( Rel A /\ A. x E. z A. y ( x A y -> y = z ) ) ) |