Metamath Proof Explorer


Theorem dffun3f

Description: Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021)

Ref Expression
Hypotheses dffun3f.1
|- F/_ x A
dffun3f.2
|- F/_ y A
dffun3f.3
|- F/_ z A
Assertion dffun3f
|- ( Fun A <-> ( Rel A /\ A. x E. z A. y ( x A y -> y = z ) ) )

Proof

Step Hyp Ref Expression
1 dffun3f.1
 |-  F/_ x A
2 dffun3f.2
 |-  F/_ y A
3 dffun3f.3
 |-  F/_ z A
4 1 2 dffun6f
 |-  ( Fun A <-> ( Rel A /\ A. x E* y x A y ) )
5 nfcv
 |-  F/_ z x
6 nfcv
 |-  F/_ z y
7 5 3 6 nfbr
 |-  F/ z x A y
8 7 mof
 |-  ( E* y x A y <-> E. z A. y ( x A y -> y = z ) )
9 8 albii
 |-  ( A. x E* y x A y <-> A. x E. z A. y ( x A y -> y = z ) )
10 9 anbi2i
 |-  ( ( Rel A /\ A. x E* y x A y ) <-> ( Rel A /\ A. x E. z A. y ( x A y -> y = z ) ) )
11 4 10 bitri
 |-  ( Fun A <-> ( Rel A /\ A. x E. z A. y ( x A y -> y = z ) ) )