Metamath Proof Explorer


Theorem dffun3f

Description: Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021)

Ref Expression
Hypotheses dffun3f.1 _xA
dffun3f.2 _yA
dffun3f.3 _zA
Assertion dffun3f FunARelAxzyxAyy=z

Proof

Step Hyp Ref Expression
1 dffun3f.1 _xA
2 dffun3f.2 _yA
3 dffun3f.3 _zA
4 1 2 dffun6f FunARelAx*yxAy
5 nfcv _zx
6 nfcv _zy
7 5 3 6 nfbr zxAy
8 7 mof *yxAyzyxAyy=z
9 8 albii x*yxAyxzyxAyy=z
10 9 anbi2i RelAx*yxAyRelAxzyxAyy=z
11 4 10 bitri FunARelAxzyxAyy=z