Metamath Proof Explorer


Theorem dffunsALTV4

Description: Alternate definition of the class of functions. For the X axis and the Y axis you can convert the right side to { f e. Rels | A. x1 E* y1 x1 f y1 } . (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion dffunsALTV4
|- FunsALTV = { f e. Rels | A. u E* x u f x }

Proof

Step Hyp Ref Expression
1 dffunsALTV
 |-  FunsALTV = { f e. Rels | ,~ f e. CnvRefRels }
2 cosselcnvrefrels4
 |-  ( ,~ f e. CnvRefRels <-> ( A. u E* x u f x /\ ,~ f e. Rels ) )
3 cosselrels
 |-  ( f e. Rels -> ,~ f e. Rels )
4 3 biantrud
 |-  ( f e. Rels -> ( A. u E* x u f x <-> ( A. u E* x u f x /\ ,~ f e. Rels ) ) )
5 2 4 bitr4id
 |-  ( f e. Rels -> ( ,~ f e. CnvRefRels <-> A. u E* x u f x ) )
6 1 5 rabimbieq
 |-  FunsALTV = { f e. Rels | A. u E* x u f x }