Metamath Proof Explorer


Theorem dfid5

Description: Identity relation is equal to relational exponentiation to the first power. (Contributed by RP, 9-Jun-2020)

Ref Expression
Assertion dfid5
|- _I = ( x e. _V |-> ( x ^r 1 ) )

Proof

Step Hyp Ref Expression
1 dfid4
 |-  _I = ( x e. _V |-> x )
2 relexp1g
 |-  ( x e. _V -> ( x ^r 1 ) = x )
3 2 mpteq2ia
 |-  ( x e. _V |-> ( x ^r 1 ) ) = ( x e. _V |-> x )
4 1 3 eqtr4i
 |-  _I = ( x e. _V |-> ( x ^r 1 ) )