Metamath Proof Explorer


Theorem dfid6

Description: Identity relation expressed as indexed union of relational powers. (Contributed by RP, 9-Jun-2020)

Ref Expression
Assertion dfid6
|- _I = ( x e. _V |-> U_ n e. { 1 } ( x ^r n ) )

Proof

Step Hyp Ref Expression
1 dfid4
 |-  _I = ( x e. _V |-> x )
2 1ex
 |-  1 e. _V
3 oveq2
 |-  ( n = 1 -> ( x ^r n ) = ( x ^r 1 ) )
4 2 3 iunxsn
 |-  U_ n e. { 1 } ( x ^r n ) = ( x ^r 1 )
5 relexp1g
 |-  ( x e. _V -> ( x ^r 1 ) = x )
6 4 5 eqtrid
 |-  ( x e. _V -> U_ n e. { 1 } ( x ^r n ) = x )
7 6 mpteq2ia
 |-  ( x e. _V |-> U_ n e. { 1 } ( x ^r n ) ) = ( x e. _V |-> x )
8 1 7 eqtr4i
 |-  _I = ( x e. _V |-> U_ n e. { 1 } ( x ^r n ) )