Description: Identity relation expressed as indexed union of relational powers. (Contributed by RP, 9-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfid6 | ⊢ I = ( 𝑥 ∈ V ↦ ∪ 𝑛 ∈ { 1 } ( 𝑥 ↑𝑟 𝑛 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfid4 | ⊢ I = ( 𝑥 ∈ V ↦ 𝑥 ) | |
2 | 1ex | ⊢ 1 ∈ V | |
3 | oveq2 | ⊢ ( 𝑛 = 1 → ( 𝑥 ↑𝑟 𝑛 ) = ( 𝑥 ↑𝑟 1 ) ) | |
4 | 2 3 | iunxsn | ⊢ ∪ 𝑛 ∈ { 1 } ( 𝑥 ↑𝑟 𝑛 ) = ( 𝑥 ↑𝑟 1 ) |
5 | relexp1g | ⊢ ( 𝑥 ∈ V → ( 𝑥 ↑𝑟 1 ) = 𝑥 ) | |
6 | 4 5 | eqtrid | ⊢ ( 𝑥 ∈ V → ∪ 𝑛 ∈ { 1 } ( 𝑥 ↑𝑟 𝑛 ) = 𝑥 ) |
7 | 6 | mpteq2ia | ⊢ ( 𝑥 ∈ V ↦ ∪ 𝑛 ∈ { 1 } ( 𝑥 ↑𝑟 𝑛 ) ) = ( 𝑥 ∈ V ↦ 𝑥 ) |
8 | 1 7 | eqtr4i | ⊢ I = ( 𝑥 ∈ V ↦ ∪ 𝑛 ∈ { 1 } ( 𝑥 ↑𝑟 𝑛 ) ) |