| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfoprab4f.x |
|- F/ x ph |
| 2 |
|
dfoprab4f.y |
|- F/ y ph |
| 3 |
|
dfoprab4f.1 |
|- ( w = <. x , y >. -> ( ph <-> ps ) ) |
| 4 |
|
nfv |
|- F/ x w = <. t , u >. |
| 5 |
|
nfs1v |
|- F/ x [ t / x ] [ u / y ] ps |
| 6 |
1 5
|
nfbi |
|- F/ x ( ph <-> [ t / x ] [ u / y ] ps ) |
| 7 |
4 6
|
nfim |
|- F/ x ( w = <. t , u >. -> ( ph <-> [ t / x ] [ u / y ] ps ) ) |
| 8 |
|
opeq1 |
|- ( x = t -> <. x , u >. = <. t , u >. ) |
| 9 |
8
|
eqeq2d |
|- ( x = t -> ( w = <. x , u >. <-> w = <. t , u >. ) ) |
| 10 |
|
sbequ12 |
|- ( x = t -> ( [ u / y ] ps <-> [ t / x ] [ u / y ] ps ) ) |
| 11 |
10
|
bibi2d |
|- ( x = t -> ( ( ph <-> [ u / y ] ps ) <-> ( ph <-> [ t / x ] [ u / y ] ps ) ) ) |
| 12 |
9 11
|
imbi12d |
|- ( x = t -> ( ( w = <. x , u >. -> ( ph <-> [ u / y ] ps ) ) <-> ( w = <. t , u >. -> ( ph <-> [ t / x ] [ u / y ] ps ) ) ) ) |
| 13 |
|
nfv |
|- F/ y w = <. x , u >. |
| 14 |
|
nfs1v |
|- F/ y [ u / y ] ps |
| 15 |
2 14
|
nfbi |
|- F/ y ( ph <-> [ u / y ] ps ) |
| 16 |
13 15
|
nfim |
|- F/ y ( w = <. x , u >. -> ( ph <-> [ u / y ] ps ) ) |
| 17 |
|
opeq2 |
|- ( y = u -> <. x , y >. = <. x , u >. ) |
| 18 |
17
|
eqeq2d |
|- ( y = u -> ( w = <. x , y >. <-> w = <. x , u >. ) ) |
| 19 |
|
sbequ12 |
|- ( y = u -> ( ps <-> [ u / y ] ps ) ) |
| 20 |
19
|
bibi2d |
|- ( y = u -> ( ( ph <-> ps ) <-> ( ph <-> [ u / y ] ps ) ) ) |
| 21 |
18 20
|
imbi12d |
|- ( y = u -> ( ( w = <. x , y >. -> ( ph <-> ps ) ) <-> ( w = <. x , u >. -> ( ph <-> [ u / y ] ps ) ) ) ) |
| 22 |
16 21 3
|
chvarfv |
|- ( w = <. x , u >. -> ( ph <-> [ u / y ] ps ) ) |
| 23 |
7 12 22
|
chvarfv |
|- ( w = <. t , u >. -> ( ph <-> [ t / x ] [ u / y ] ps ) ) |
| 24 |
23
|
dfoprab4 |
|- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. <. t , u >. , z >. | ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) } |
| 25 |
|
nfv |
|- F/ t ( ( x e. A /\ y e. B ) /\ ps ) |
| 26 |
|
nfv |
|- F/ u ( ( x e. A /\ y e. B ) /\ ps ) |
| 27 |
|
nfv |
|- F/ x ( t e. A /\ u e. B ) |
| 28 |
27 5
|
nfan |
|- F/ x ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) |
| 29 |
|
nfv |
|- F/ y ( t e. A /\ u e. B ) |
| 30 |
14
|
nfsbv |
|- F/ y [ t / x ] [ u / y ] ps |
| 31 |
29 30
|
nfan |
|- F/ y ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) |
| 32 |
|
eleq1w |
|- ( x = t -> ( x e. A <-> t e. A ) ) |
| 33 |
|
eleq1w |
|- ( y = u -> ( y e. B <-> u e. B ) ) |
| 34 |
32 33
|
bi2anan9 |
|- ( ( x = t /\ y = u ) -> ( ( x e. A /\ y e. B ) <-> ( t e. A /\ u e. B ) ) ) |
| 35 |
19 10
|
sylan9bbr |
|- ( ( x = t /\ y = u ) -> ( ps <-> [ t / x ] [ u / y ] ps ) ) |
| 36 |
34 35
|
anbi12d |
|- ( ( x = t /\ y = u ) -> ( ( ( x e. A /\ y e. B ) /\ ps ) <-> ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) ) ) |
| 37 |
25 26 28 31 36
|
cbvoprab12 |
|- { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } = { <. <. t , u >. , z >. | ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) } |
| 38 |
24 37
|
eqtr4i |
|- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } |