Description: The (positive) prime elements of the integer ring are the prime numbers. (Contributed by Thierry Arnoux, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfprm3 | |- Prime = ( NN i^i ( RPrime ` ZZring ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Irred ` ZZring ) = ( Irred ` ZZring ) |
|
| 2 | 1 | dfprm2 | |- Prime = ( NN i^i ( Irred ` ZZring ) ) |
| 3 | eqid | |- ( RPrime ` ZZring ) = ( RPrime ` ZZring ) |
|
| 4 | zringpid | |- ZZring e. PID |
|
| 5 | 4 | a1i | |- ( T. -> ZZring e. PID ) |
| 6 | 3 1 5 | rprmirredb | |- ( T. -> ( Irred ` ZZring ) = ( RPrime ` ZZring ) ) |
| 7 | 6 | mptru | |- ( Irred ` ZZring ) = ( RPrime ` ZZring ) |
| 8 | 7 | ineq2i | |- ( NN i^i ( Irred ` ZZring ) ) = ( NN i^i ( RPrime ` ZZring ) ) |
| 9 | 2 8 | eqtri | |- Prime = ( NN i^i ( RPrime ` ZZring ) ) |