Description: The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringpid | |- ZZring e. PID |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringidom | |- ZZring e. IDomn |
|
| 2 | zringlpir | |- ZZring e. LPIR |
|
| 3 | 1 2 | elini | |- ZZring e. ( IDomn i^i LPIR ) |
| 4 | df-pid | |- PID = ( IDomn i^i LPIR ) |
|
| 5 | 3 4 | eleqtrri | |- ZZring e. PID |