| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringcrng |
|- ZZring e. CRing |
| 2 |
|
zringnzr |
|- ZZring e. NzRing |
| 3 |
|
eldifi |
|- ( x e. ( ZZ \ { 0 } ) -> x e. ZZ ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> x e. ZZ ) |
| 5 |
4
|
zcnd |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> x e. CC ) |
| 6 |
|
simplr |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> y e. ZZ ) |
| 7 |
6
|
zcnd |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> y e. CC ) |
| 8 |
|
simpr |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> ( x x. y ) = 0 ) |
| 9 |
|
mul0or |
|- ( ( x e. CC /\ y e. CC ) -> ( ( x x. y ) = 0 <-> ( x = 0 \/ y = 0 ) ) ) |
| 10 |
9
|
biimpa |
|- ( ( ( x e. CC /\ y e. CC ) /\ ( x x. y ) = 0 ) -> ( x = 0 \/ y = 0 ) ) |
| 11 |
5 7 8 10
|
syl21anc |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> ( x = 0 \/ y = 0 ) ) |
| 12 |
|
eldifsni |
|- ( x e. ( ZZ \ { 0 } ) -> x =/= 0 ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> x =/= 0 ) |
| 14 |
13
|
neneqd |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> -. x = 0 ) |
| 15 |
11 14
|
orcnd |
|- ( ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) /\ ( x x. y ) = 0 ) -> y = 0 ) |
| 16 |
15
|
ex |
|- ( ( x e. ( ZZ \ { 0 } ) /\ y e. ZZ ) -> ( ( x x. y ) = 0 -> y = 0 ) ) |
| 17 |
16
|
ralrimiva |
|- ( x e. ( ZZ \ { 0 } ) -> A. y e. ZZ ( ( x x. y ) = 0 -> y = 0 ) ) |
| 18 |
|
eqid |
|- ( RLReg ` ZZring ) = ( RLReg ` ZZring ) |
| 19 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 20 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
| 21 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
| 22 |
18 19 20 21
|
isrrg |
|- ( x e. ( RLReg ` ZZring ) <-> ( x e. ZZ /\ A. y e. ZZ ( ( x x. y ) = 0 -> y = 0 ) ) ) |
| 23 |
3 17 22
|
sylanbrc |
|- ( x e. ( ZZ \ { 0 } ) -> x e. ( RLReg ` ZZring ) ) |
| 24 |
23
|
ssriv |
|- ( ZZ \ { 0 } ) C_ ( RLReg ` ZZring ) |
| 25 |
19 18 21
|
isdomn2 |
|- ( ZZring e. Domn <-> ( ZZring e. NzRing /\ ( ZZ \ { 0 } ) C_ ( RLReg ` ZZring ) ) ) |
| 26 |
2 24 25
|
mpbir2an |
|- ZZring e. Domn |
| 27 |
|
isidom |
|- ( ZZring e. IDomn <-> ( ZZring e. CRing /\ ZZring e. Domn ) ) |
| 28 |
1 26 27
|
mpbir2an |
|- ZZring e. IDomn |