| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmirredb.p |
|- P = ( RPrime ` R ) |
| 2 |
|
rprmirredb.i |
|- I = ( Irred ` R ) |
| 3 |
|
rprmirredb.r |
|- ( ph -> R e. PID ) |
| 4 |
3
|
adantr |
|- ( ( ph /\ p e. I ) -> R e. PID ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
2 5
|
irredcl |
|- ( p e. I -> p e. ( Base ` R ) ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ p e. I ) -> p e. ( Base ` R ) ) |
| 8 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 9 |
2 8
|
irrednu |
|- ( p e. I -> -. p e. ( Unit ` R ) ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ p e. I ) -> -. p e. ( Unit ` R ) ) |
| 11 |
|
df-pid |
|- PID = ( IDomn i^i LPIR ) |
| 12 |
3 11
|
eleqtrdi |
|- ( ph -> R e. ( IDomn i^i LPIR ) ) |
| 13 |
12
|
elin1d |
|- ( ph -> R e. IDomn ) |
| 14 |
13
|
idomringd |
|- ( ph -> R e. Ring ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ p e. I ) -> R e. Ring ) |
| 16 |
|
simpr |
|- ( ( ph /\ p e. I ) -> p e. I ) |
| 17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 18 |
2 17
|
irredn0 |
|- ( ( R e. Ring /\ p e. I ) -> p =/= ( 0g ` R ) ) |
| 19 |
15 16 18
|
syl2anc |
|- ( ( ph /\ p e. I ) -> p =/= ( 0g ` R ) ) |
| 20 |
|
nelsn |
|- ( p =/= ( 0g ` R ) -> -. p e. { ( 0g ` R ) } ) |
| 21 |
19 20
|
syl |
|- ( ( ph /\ p e. I ) -> -. p e. { ( 0g ` R ) } ) |
| 22 |
|
eqid |
|- ( ( Unit ` R ) u. { ( 0g ` R ) } ) = ( ( Unit ` R ) u. { ( 0g ` R ) } ) |
| 23 |
|
nelun |
|- ( ( ( Unit ` R ) u. { ( 0g ` R ) } ) = ( ( Unit ` R ) u. { ( 0g ` R ) } ) -> ( -. p e. ( ( Unit ` R ) u. { ( 0g ` R ) } ) <-> ( -. p e. ( Unit ` R ) /\ -. p e. { ( 0g ` R ) } ) ) ) |
| 24 |
22 23
|
ax-mp |
|- ( -. p e. ( ( Unit ` R ) u. { ( 0g ` R ) } ) <-> ( -. p e. ( Unit ` R ) /\ -. p e. { ( 0g ` R ) } ) ) |
| 25 |
10 21 24
|
sylanbrc |
|- ( ( ph /\ p e. I ) -> -. p e. ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) |
| 26 |
7 25
|
eldifd |
|- ( ( ph /\ p e. I ) -> p e. ( ( Base ` R ) \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) ) |
| 27 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
| 28 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 29 |
15
|
ad3antrrr |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> R e. Ring ) |
| 30 |
7
|
ad3antrrr |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> p e. ( Base ` R ) ) |
| 31 |
5 27 28 29 30
|
ellpi |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x e. ( ( RSpan ` R ) ` { p } ) <-> p ( ||r ` R ) x ) ) |
| 32 |
31
|
biimpa |
|- ( ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) /\ x e. ( ( RSpan ` R ) ` { p } ) ) -> p ( ||r ` R ) x ) |
| 33 |
5 27 28 29 30
|
ellpi |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( y e. ( ( RSpan ` R ) ` { p } ) <-> p ( ||r ` R ) y ) ) |
| 34 |
33
|
biimpa |
|- ( ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) /\ y e. ( ( RSpan ` R ) ` { p } ) ) -> p ( ||r ` R ) y ) |
| 35 |
13
|
idomcringd |
|- ( ph -> R e. CRing ) |
| 36 |
35
|
ad4antr |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> R e. CRing ) |
| 37 |
2
|
eleq2i |
|- ( p e. I <-> p e. ( Irred ` R ) ) |
| 38 |
37
|
biimpi |
|- ( p e. I -> p e. ( Irred ` R ) ) |
| 39 |
38
|
adantl |
|- ( ( ph /\ p e. I ) -> p e. ( Irred ` R ) ) |
| 40 |
|
eqid |
|- ( ( RSpan ` R ) ` { p } ) = ( ( RSpan ` R ) ` { p } ) |
| 41 |
7
|
snssd |
|- ( ( ph /\ p e. I ) -> { p } C_ ( Base ` R ) ) |
| 42 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 43 |
27 5 42
|
rspcl |
|- ( ( R e. Ring /\ { p } C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( LIdeal ` R ) ) |
| 44 |
15 41 43
|
syl2anc |
|- ( ( ph /\ p e. I ) -> ( ( RSpan ` R ) ` { p } ) e. ( LIdeal ` R ) ) |
| 45 |
5 27 17 40 4 7 19 44
|
mxidlirred |
|- ( ( ph /\ p e. I ) -> ( ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) <-> p e. ( Irred ` R ) ) ) |
| 46 |
39 45
|
mpbird |
|- ( ( ph /\ p e. I ) -> ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) |
| 47 |
46
|
ad3antrrr |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) |
| 48 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
| 49 |
48
|
mxidlprm |
|- ( ( R e. CRing /\ ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) |
| 50 |
36 47 49
|
syl2anc |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) |
| 51 |
|
simpllr |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> x e. ( Base ` R ) ) |
| 52 |
|
simplr |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> y e. ( Base ` R ) ) |
| 53 |
|
simpr |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> p ( ||r ` R ) ( x ( .r ` R ) y ) ) |
| 54 |
5 27 28 29 30
|
ellpi |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( ( x ( .r ` R ) y ) e. ( ( RSpan ` R ) ` { p } ) <-> p ( ||r ` R ) ( x ( .r ` R ) y ) ) ) |
| 55 |
53 54
|
mpbird |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x ( .r ` R ) y ) e. ( ( RSpan ` R ) ` { p } ) ) |
| 56 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 57 |
5 56
|
prmidlc |
|- ( ( ( R e. CRing /\ ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ ( x ( .r ` R ) y ) e. ( ( RSpan ` R ) ` { p } ) ) ) -> ( x e. ( ( RSpan ` R ) ` { p } ) \/ y e. ( ( RSpan ` R ) ` { p } ) ) ) |
| 58 |
36 50 51 52 55 57
|
syl23anc |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x e. ( ( RSpan ` R ) ` { p } ) \/ y e. ( ( RSpan ` R ) ` { p } ) ) ) |
| 59 |
32 34 58
|
orim12da |
|- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( p ( ||r ` R ) x \/ p ( ||r ` R ) y ) ) |
| 60 |
59
|
ex |
|- ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( p ( ||r ` R ) ( x ( .r ` R ) y ) -> ( p ( ||r ` R ) x \/ p ( ||r ` R ) y ) ) ) |
| 61 |
60
|
anasss |
|- ( ( ( ph /\ p e. I ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( p ( ||r ` R ) ( x ( .r ` R ) y ) -> ( p ( ||r ` R ) x \/ p ( ||r ` R ) y ) ) ) |
| 62 |
61
|
ralrimivva |
|- ( ( ph /\ p e. I ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( p ( ||r ` R ) ( x ( .r ` R ) y ) -> ( p ( ||r ` R ) x \/ p ( ||r ` R ) y ) ) ) |
| 63 |
5 8 17 28 56
|
isrprm |
|- ( R e. PID -> ( p e. ( RPrime ` R ) <-> ( p e. ( ( Base ` R ) \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( p ( ||r ` R ) ( x ( .r ` R ) y ) -> ( p ( ||r ` R ) x \/ p ( ||r ` R ) y ) ) ) ) ) |
| 64 |
63
|
biimpar |
|- ( ( R e. PID /\ ( p e. ( ( Base ` R ) \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( p ( ||r ` R ) ( x ( .r ` R ) y ) -> ( p ( ||r ` R ) x \/ p ( ||r ` R ) y ) ) ) ) -> p e. ( RPrime ` R ) ) |
| 65 |
4 26 62 64
|
syl12anc |
|- ( ( ph /\ p e. I ) -> p e. ( RPrime ` R ) ) |
| 66 |
65 1
|
eleqtrrdi |
|- ( ( ph /\ p e. I ) -> p e. P ) |
| 67 |
|
simpr |
|- ( ( ph /\ p e. P ) -> p e. P ) |
| 68 |
13
|
adantr |
|- ( ( ph /\ p e. P ) -> R e. IDomn ) |
| 69 |
1 2 67 68
|
rprmirred |
|- ( ( ph /\ p e. P ) -> p e. I ) |
| 70 |
66 69
|
impbida |
|- ( ph -> ( p e. I <-> p e. P ) ) |
| 71 |
70
|
eqrdv |
|- ( ph -> I = P ) |