| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmirredb.p |
|
| 2 |
|
rprmirredb.i |
|
| 3 |
|
rprmirredb.r |
|
| 4 |
3
|
adantr |
|
| 5 |
|
eqid |
|
| 6 |
2 5
|
irredcl |
|
| 7 |
6
|
adantl |
|
| 8 |
|
eqid |
|
| 9 |
2 8
|
irrednu |
|
| 10 |
9
|
adantl |
|
| 11 |
|
df-pid |
|
| 12 |
3 11
|
eleqtrdi |
|
| 13 |
12
|
elin1d |
|
| 14 |
13
|
idomringd |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simpr |
|
| 17 |
|
eqid |
|
| 18 |
2 17
|
irredn0 |
|
| 19 |
15 16 18
|
syl2anc |
|
| 20 |
|
nelsn |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
eqid |
|
| 23 |
|
nelun |
|
| 24 |
22 23
|
ax-mp |
|
| 25 |
10 21 24
|
sylanbrc |
|
| 26 |
7 25
|
eldifd |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
15
|
ad3antrrr |
|
| 30 |
7
|
ad3antrrr |
|
| 31 |
5 27 28 29 30
|
ellpi |
|
| 32 |
31
|
biimpa |
|
| 33 |
5 27 28 29 30
|
ellpi |
|
| 34 |
33
|
biimpa |
|
| 35 |
13
|
idomcringd |
|
| 36 |
35
|
ad4antr |
|
| 37 |
2
|
eleq2i |
|
| 38 |
37
|
biimpi |
|
| 39 |
38
|
adantl |
|
| 40 |
|
eqid |
|
| 41 |
7
|
snssd |
|
| 42 |
|
eqid |
|
| 43 |
27 5 42
|
rspcl |
|
| 44 |
15 41 43
|
syl2anc |
|
| 45 |
5 27 17 40 4 7 19 44
|
mxidlirred |
|
| 46 |
39 45
|
mpbird |
|
| 47 |
46
|
ad3antrrr |
|
| 48 |
|
eqid |
|
| 49 |
48
|
mxidlprm |
|
| 50 |
36 47 49
|
syl2anc |
|
| 51 |
|
simpllr |
|
| 52 |
|
simplr |
|
| 53 |
|
simpr |
|
| 54 |
5 27 28 29 30
|
ellpi |
|
| 55 |
53 54
|
mpbird |
|
| 56 |
|
eqid |
|
| 57 |
5 56
|
prmidlc |
|
| 58 |
36 50 51 52 55 57
|
syl23anc |
|
| 59 |
32 34 58
|
orim12da |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
anasss |
|
| 62 |
61
|
ralrimivva |
|
| 63 |
5 8 17 28 56
|
isrprm |
|
| 64 |
63
|
biimpar |
|
| 65 |
4 26 62 64
|
syl12anc |
|
| 66 |
65 1
|
eleqtrrdi |
|
| 67 |
|
simpr |
|
| 68 |
13
|
adantr |
|
| 69 |
1 2 67 68
|
rprmirred |
|
| 70 |
66 69
|
impbida |
|
| 71 |
70
|
eqrdv |
|