| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmdvdspow.b |
|
| 2 |
|
rprmdvdspow.p |
|
| 3 |
|
rprmdvdspow.d |
|
| 4 |
|
rprmdvdspow.m |
|
| 5 |
|
rprmdvdspow.o |
|
| 6 |
|
rprmdvdspow.r |
|
| 7 |
|
rprmdvdspow.x |
|
| 8 |
|
rprmdvdspow.q |
|
| 9 |
|
rprmdvdspow.n |
|
| 10 |
|
rprmdvdspow.1 |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
breq2d |
|
| 13 |
12
|
imbi1d |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
breq2d |
|
| 16 |
15
|
imbi1d |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
breq2d |
|
| 19 |
18
|
imbi1d |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
breq2d |
|
| 22 |
21
|
imbi1d |
|
| 23 |
4 1
|
mgpbas |
|
| 24 |
|
eqid |
|
| 25 |
4 24
|
ringidval |
|
| 26 |
23 25 5
|
mulg0 |
|
| 27 |
7 26
|
syl |
|
| 28 |
27
|
breq2d |
|
| 29 |
28
|
biimpa |
|
| 30 |
24 3 2 6 8
|
rprmndvdsr1 |
|
| 31 |
30
|
adantr |
|
| 32 |
29 31
|
pm2.21dd |
|
| 33 |
32
|
ex |
|
| 34 |
|
simpllr |
|
| 35 |
34
|
syldbl2 |
|
| 36 |
|
simpr |
|
| 37 |
|
eqid |
|
| 38 |
6
|
ad3antrrr |
|
| 39 |
8
|
ad3antrrr |
|
| 40 |
6
|
crngringd |
|
| 41 |
4
|
ringmgp |
|
| 42 |
40 41
|
syl |
|
| 43 |
42
|
ad3antrrr |
|
| 44 |
|
simpllr |
|
| 45 |
7
|
ad3antrrr |
|
| 46 |
23 5 43 44 45
|
mulgnn0cld |
|
| 47 |
42
|
adantr |
|
| 48 |
|
simpr |
|
| 49 |
7
|
adantr |
|
| 50 |
4 37
|
mgpplusg |
|
| 51 |
23 5 50
|
mulgnn0p1 |
|
| 52 |
47 48 49 51
|
syl3anc |
|
| 53 |
52
|
breq2d |
|
| 54 |
53
|
biimpa |
|
| 55 |
54
|
adantlr |
|
| 56 |
1 2 3 37 38 39 46 45 55
|
rprmdvds |
|
| 57 |
35 36 56
|
mpjaodan |
|
| 58 |
57
|
ex |
|
| 59 |
13 16 19 22 33 58
|
nn0indd |
|
| 60 |
9 59
|
mpdan |
|
| 61 |
10 60
|
mpd |
|