| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmirredb.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
| 2 |
|
rprmirredb.i |
⊢ 𝐼 = ( Irred ‘ 𝑅 ) |
| 3 |
|
rprmirredb.r |
⊢ ( 𝜑 → 𝑅 ∈ PID ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑅 ∈ PID ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
2 5
|
irredcl |
⊢ ( 𝑝 ∈ 𝐼 → 𝑝 ∈ ( Base ‘ 𝑅 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑝 ∈ ( Base ‘ 𝑅 ) ) |
| 8 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 9 |
2 8
|
irrednu |
⊢ ( 𝑝 ∈ 𝐼 → ¬ 𝑝 ∈ ( Unit ‘ 𝑅 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → ¬ 𝑝 ∈ ( Unit ‘ 𝑅 ) ) |
| 11 |
|
df-pid |
⊢ PID = ( IDomn ∩ LPIR ) |
| 12 |
3 11
|
eleqtrdi |
⊢ ( 𝜑 → 𝑅 ∈ ( IDomn ∩ LPIR ) ) |
| 13 |
12
|
elin1d |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 14 |
13
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑝 ∈ 𝐼 ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 18 |
2 17
|
irredn0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐼 ) → 𝑝 ≠ ( 0g ‘ 𝑅 ) ) |
| 19 |
15 16 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑝 ≠ ( 0g ‘ 𝑅 ) ) |
| 20 |
|
nelsn |
⊢ ( 𝑝 ≠ ( 0g ‘ 𝑅 ) → ¬ 𝑝 ∈ { ( 0g ‘ 𝑅 ) } ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → ¬ 𝑝 ∈ { ( 0g ‘ 𝑅 ) } ) |
| 22 |
|
eqid |
⊢ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) = ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) |
| 23 |
|
nelun |
⊢ ( ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) = ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) → ( ¬ 𝑝 ∈ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ↔ ( ¬ 𝑝 ∈ ( Unit ‘ 𝑅 ) ∧ ¬ 𝑝 ∈ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 24 |
22 23
|
ax-mp |
⊢ ( ¬ 𝑝 ∈ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ↔ ( ¬ 𝑝 ∈ ( Unit ‘ 𝑅 ) ∧ ¬ 𝑝 ∈ { ( 0g ‘ 𝑅 ) } ) ) |
| 25 |
10 21 24
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → ¬ 𝑝 ∈ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ) |
| 26 |
7 25
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑝 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 27 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
| 28 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 29 |
15
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑅 ∈ Ring ) |
| 30 |
7
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑝 ∈ ( Base ‘ 𝑅 ) ) |
| 31 |
5 27 28 29 30
|
ellpi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑥 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ↔ 𝑝 ( ∥r ‘ 𝑅 ) 𝑥 ) ) |
| 32 |
31
|
biimpa |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ∧ 𝑥 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ) → 𝑝 ( ∥r ‘ 𝑅 ) 𝑥 ) |
| 33 |
5 27 28 29 30
|
ellpi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑦 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ↔ 𝑝 ( ∥r ‘ 𝑅 ) 𝑦 ) ) |
| 34 |
33
|
biimpa |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ∧ 𝑦 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ) → 𝑝 ( ∥r ‘ 𝑅 ) 𝑦 ) |
| 35 |
13
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 36 |
35
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑅 ∈ CRing ) |
| 37 |
2
|
eleq2i |
⊢ ( 𝑝 ∈ 𝐼 ↔ 𝑝 ∈ ( Irred ‘ 𝑅 ) ) |
| 38 |
37
|
biimpi |
⊢ ( 𝑝 ∈ 𝐼 → 𝑝 ∈ ( Irred ‘ 𝑅 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑝 ∈ ( Irred ‘ 𝑅 ) ) |
| 40 |
|
eqid |
⊢ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) |
| 41 |
7
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → { 𝑝 } ⊆ ( Base ‘ 𝑅 ) ) |
| 42 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 43 |
27 5 42
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑝 } ⊆ ( Base ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 44 |
15 41 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 45 |
5 27 17 40 4 7 19 44
|
mxidlirred |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( MaxIdeal ‘ 𝑅 ) ↔ 𝑝 ∈ ( Irred ‘ 𝑅 ) ) ) |
| 46 |
39 45
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 47 |
46
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 48 |
|
eqid |
⊢ ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) |
| 49 |
48
|
mxidlprm |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 50 |
36 47 49
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 51 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 52 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 53 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 54 |
5 27 28 29 30
|
ellpi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ↔ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 55 |
53 54
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ) |
| 56 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 57 |
5 56
|
prmidlc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ) ) → ( 𝑥 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∨ 𝑦 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ) ) |
| 58 |
36 50 51 52 55 57
|
syl23anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑥 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ∨ 𝑦 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑝 } ) ) ) |
| 59 |
32 34 58
|
orim12da |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑝 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑝 ( ∥r ‘ 𝑅 ) 𝑦 ) ) |
| 60 |
59
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) → ( 𝑝 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑝 ( ∥r ‘ 𝑅 ) 𝑦 ) ) ) |
| 61 |
60
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) → ( 𝑝 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑝 ( ∥r ‘ 𝑅 ) 𝑦 ) ) ) |
| 62 |
61
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) → ( 𝑝 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑝 ( ∥r ‘ 𝑅 ) 𝑦 ) ) ) |
| 63 |
5 8 17 28 56
|
isrprm |
⊢ ( 𝑅 ∈ PID → ( 𝑝 ∈ ( RPrime ‘ 𝑅 ) ↔ ( 𝑝 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) → ( 𝑝 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑝 ( ∥r ‘ 𝑅 ) 𝑦 ) ) ) ) ) |
| 64 |
63
|
biimpar |
⊢ ( ( 𝑅 ∈ PID ∧ ( 𝑝 ∈ ( ( Base ‘ 𝑅 ) ∖ ( ( Unit ‘ 𝑅 ) ∪ { ( 0g ‘ 𝑅 ) } ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑝 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) → ( 𝑝 ( ∥r ‘ 𝑅 ) 𝑥 ∨ 𝑝 ( ∥r ‘ 𝑅 ) 𝑦 ) ) ) ) → 𝑝 ∈ ( RPrime ‘ 𝑅 ) ) |
| 65 |
4 26 62 64
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑝 ∈ ( RPrime ‘ 𝑅 ) ) |
| 66 |
65 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐼 ) → 𝑝 ∈ 𝑃 ) |
| 67 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ 𝑃 ) |
| 68 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑅 ∈ IDomn ) |
| 69 |
1 2 67 68
|
rprmirred |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ 𝐼 ) |
| 70 |
66 69
|
impbida |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝐼 ↔ 𝑝 ∈ 𝑃 ) ) |
| 71 |
70
|
eqrdv |
⊢ ( 𝜑 → 𝐼 = 𝑃 ) |